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Abstract

Large scale systems have posed a great challenge to both modelling and

control since the high dimensionality often causes complexities in modelling,

control design and implementation. In this report we consider a class of large

scale systems motivated from the large segmented telescope test-bed located

at the SPACE lab of California State University, Los Angeles.

We develop a wide class of decentralized control schemes to meet the perfor-

mance requirements as well as decentralized failure detection, isolation and

reconfigurable control schemes to deal with possible sensor failures. Different

control design techniques that include H∞, linear quadratic, static output

feedback, and direct adaptive control are used as part of the decentralized

schemes. The objective is to meet the performance requirements with the

least computationally complex control scheme in the presence of possible dis-

turbances and sensor failures.

The algorithms are developed and analyzed for a general class of large scale

systems. Their properties are demonstrated in real time using the segmented

telescope structure located at the SPACE lab of California State University,

Los Angeles.
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Chapter 1

Introduction

A system is called “large scale” either because its dimension is so large that conventional

techniques of modelling, analysis, control, design and computation fail to give a reasonable

solution with reasonable computational efforts or if it can be decoupled or partitioned into a

number of interconnected subsystems [28]. There are many examples of large scale systems

that present a great challenge to both modelling and control. Among those, large flexible

space structure(LFSS) is the one that will be addressed here.

Large flexible space structures are typical large scale systems due to the large size, low

rigidity and low damping that often result in their mathematical models of high dimension-

ality. Segmented telescope is just one among them. The accurate control of the segments of

large segmented telescopes to achieve the desired shape could open the way for the construc-

tion of much larger telescopes with much better capabilities. The approaches considered for

the control of LFSS have generally been directed towards ”centralized control”. Model reduc-

tion [29, 22], modal control [38, 3], output feedback control [4, 30], adaptive control [20, 39],

frequency-weighted Linear Quadratic Gaussian(LQG) [19], Independent Modal Space Con-

trol(IMSC) [37], positivity combined with multivariable characteristic frequency loci [27, 10],

modified linear quadratic regulator(LQR) control [9], H∞ robust control [41] are some of

the techniques used to deal with the centralized control problem of LFSS.

However, the high-order LFSS model often results in a high-order controller. In real-time

implementation, the order of the controller is limited by the hardware and computational

complexity. In such case a decentralized control approach may be more appropriate. The

motivation for obtaining a decentralized controller is simplicity of implementation which

makes parallel computation feasible. In order for the decentralized control to achieve as good

performance as that of the centralized control, the interconnections between subsystems have

to be weak. Unfortunately, the dynamics of the mirror segments of the telescope, defined as

local subsystems, are strongly interconnected due to the structure characteristics. This makes

the conventional decentralized control fail to generate good results even the computational

difficulty could be overcome. Therefore, new technique has to be investigated.
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A compromise between the centralized and decentralized approach is provided by an

approach developed by Ikeda and Siljak [23], referred to as the overlapping decentralized

method. This approach works effectively when the subsystems are interconnected in an

”overlapped” way. We have found that the dynamics of the segmented telescope have this

overlapping property. Due to the restrictions of the approach of [23], a modified overlapping

method based only on the input-output characteristics of the system is developed and ana-

lyzed in this study. This modified approach has been successfully applied to the model of the

segmented telescope through digital simulation. The performance requirements are met and

the control laws are easy to implement in parallel. This method is further verified through

the real-time implementation on the shape control of a segmented telescope test-bed.

This report is organized as follows: Chapter 2 introduces the theory and preliminaries

about the overlapping decentralized control. Chapter 3 describes the model and performance

requirements of the large segmented telescope model, ASCIE model. Design results with

overlapping decentralized control are briefly presented. Chapter 4 describes a segmented

telescope structure and the equipment. Chapter 5 describes the modelling of a segmented

telescope test-bed. Chapter 6 describes the real-time implementation of the overlapping

decentralized control on the segmented telescope test-bed. Chapter 7 presents the simplified

decentralized control design. Chapter 8 presents the design and simulation results for the

segmented telescope test-bed model with a secondary mirror. Chapter 9 introduces the

overlapping decentralized control for a type of nonlinear systems. Chapter 10 describes the

sensor failure detection and isolation with control reconfiguration.
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Chapter 2

Theory and Preliminaries

In this section, we first present the fundamental theory for the overlapping decentralized

control: inclusion principle. Then we present a modified overlapping decentralized control

for the linear model of the segmented telescope.

2.1 Inclusion Principle

When centralized control is addressed, we assume that all the information available about

the systems, and the calculations based on the information are centralized, that is, take place

at a single location, as shown in Fig 2.1,

u y

v

Dynamic    System

Central   Controller

Figure 2.1: Centralized control system

where, u and y are the input and output of the system respectively, v is the external

input to the system.

In contrast to the centralized control, the structures of some of the large scale systems are

characterized by decentralization. For example, an electric power system has several control
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substations, each being responsible for the operation of a portion of the entire network;

an automated highway system may have many roadway traffic control stations, each being

responsible for a particular section of freeway. Each control station provides inputs to a local

subsystem based on the outputs from that local subsystem as shown in Fig 2.2, where, ui and

yi are the input and output of subsystem i respectively, vi is the external input to subsystem

i, i = 1, · · · , N . Subsystems may or may not be interconnected with each other.

Subsystem 1 Subsystem NSubsystem 2

Controller 1 Controller 2 Controller N

u1 y1 u2 y2 uN yN

v1 v2 vN

Interconnected   dynamics

Dynamic   System

Figure 2.2: Decentralized control system

In the control of large scale systems, decentralized control is often the only feasible method

to handle the computational complexity. However, subsystems are usually not completely

decoupled as in the case of traffic systems and large space structures. They are mostly

interconnected in an overlapped fashion. Ikeda and Siljak came up with an idea that involves

expansion of the input, state space and output to make the overlapped subsystems isolated.

The control laws are built for the expanded systems and applied to the original system.

Overall stability is guaranteed under certain conditions. The idea is shown in Fig 2.3. The

fundamental theory behind this idea is the Inclusion Principle [43].
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Let us consider the following differential vector equations S

ẋ = f(t, x),

and S̃
˙̃x = f̃(t, x̃),

where x(t) ∈ Rn and x̃(t) ∈ Rñ are the states of S and S̃ at t ∈ R, and n ≤ ñ.

The functions f : R ×Rn → Rn and f̃ : R ×Rñ → Rñ are assumed to be sufficiently

smooth, so that solutions x(t; t0, x0) and x̃(t; t0, x̃0) of S and S̃ exist and are unique for all

initial conditions (t0, x0) ∈ R×Rn and (t0, x̃0) ∈ R×Rñ, and all t ∈ T0 = [t0, +∞).

We consider the linear transformations

x̃ = V x, x = Ux̃, (2.1)

where V is an ñ × n constant matrix will full column rank and U is an n × ñ constant

matrix will full row rank. The inclusion concept is stated as follows:

Definition 2.1 S̃ includes S if there exists an ordered pair of matrices (U, V ) such that

UV = I, and for any (t0, x0) ∈ R×Rn, x̃0 = V x0 implies

x(t; t0, x0) = Ux̃(t; t0, x̃0), ∀t ∈ T0 (2.2)

Theorem 2.1 Suppose S̃ includes S and x̃e = V xe. Then, stability of the equilibrium x̃e of

S̃ implies stability of the equilibrium xe of S

Proof: See [43].

2.2 Stabilization Problem of Decentralized Control

The solution to the stabilization problem of decentralized control is based on the decentral-

ized fixed modes [45]. The following definition of “fixed modes” is a generalization of the

centralized idea of uncontrollable modes and unobservable modes of the triple (C,A, B) and

is basic to the problem of deciding whether a decentralized system can be stabilized.

Consider a linear time-invariant multivariable system with ν local control stations de-

scribed by:

ẋ = Ax +
ν∑

i=1

Biui (2.3)

yi = Cix, i = 1, · · · , ν (2.4)

where x ∈ Rn is the state, ui ∈ Rmi and yi ∈ Rpi are the input and output respectively of
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the ith local control station (i = 1, · · · , ν). The matrices A,Bi and Ci are real, constant,

and of appropriate size. The decentralized control problem is to find ν local feedback control

laws with dynamic compensation for (2.4) to stabilize the resultant closed loop system. The

set of local feedback laws are assumed to be generated by the following feedback controllers:

żi = Fizi + Giyi

ui = Hizi + Kiyi + vi i = 1, · · · , ν (2.5)

where zi ∈ Rni is the state of ith sub-controller, vi ∈ Rmi is the ith local external input.

Fi, Gi, Hi, Ki are real constant matrices of appropriate size.

Definition 2.2 (Wang, Davison [45]) Consider the triple (C, A,B) ∈ Rr×n × Rn×n ×
Rn×m and the two sets of integers m1, · · · ,mν and p1, · · · , pν with m =

∑ν
i=1 mi and p =∑ν

i=1 pi, which specify system (2.4). Let K be the set of block diagonal matrices as follows:

K
4
= {K|K = Block Diag[K1, · · · ,Kν ], Ki ∈ Rmi×pi , i = 1, · · · , ν}. (2.6)

Then the set of fixed modes of (C,A, B) with respect to K denoted as ∧(C, A,B,K) is defined

as follows:

∧(C, A,B,K) , {∩σ(A + BKC), K ∈ K} (2.7)

where σ(A + BKC) denotes the set of eigenvalues of (A + BKC).

The following theorem gives a solution to the decentralized stabilization problem.

Theorem 2.2 (Wang, Davison [45]) Consider the system (C, A,B) of (2.4). Let K be

the set of block diagonal matrices defined in (2.6). Then a necessary and sufficient condi-

tion for the existence of a set of decentralized controllers such that the closed-loop system is

asymptotically stable is that:

∧(C, A,B,K) ⊂ C− (2.8)

where C− denotes the open left-half complex plane.

Corollary 2.1 There always exists a set of dynamical controllers given by (2.5) which sta-

bilize the system (2.4) if

σ(A) ⊂ C−. (2.9)

Proof: The fixed modes of (C,A, B) with respect to K are defined in (2.7). Since K contains

the null matrix, ∧(C,A, B,K) ⊆ σ(A). This means the set of fixed modes of (C,A, B)

8



constitute a subset of the eigenvalue space of A. This proves the corollary.

Remark: Most large flexible structures satisfy condition (2.9) in the above corollary, which

indicates that decentralized control is a feasible method for controlling LFSS.

2.3 Sufficient Stability Conditions for Decentralized Control

Let G(s) be a square plant that is to be controlled using a block diagonal controller

K(s) =




k1(s) 0 · · · 0

0 k2(s) · · · 0
...

...
...

...

0 0 · · · kν(s)




(2.10)

where ki is the transfer function of the controller for subsystem i. We introduce

G̃(s)
4
=




g11(s) 0 · · · 0

0 g22(s) · · · 0
...

...
...

...

0 0 · · · gν,ν(s)




(2.11)

Let’s define the off-diagonal elements in G(s) by

4(s)
4
= G− G̃. (2.12)

Therefore, 4(s) can be treated as the plant uncertainty in the design, as shown in Figure

2.4.

K G̃

∆

+

_

++

Figure 2.4: Modified control system block diagram with model uncertainty

Let’s define the sensitivity and complementary sensitivity for the block diagonal plant
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G̃(s) as follows

S̃
4
= (I + G̃K)−1

T̃
4
= I − S̃ = G̃K(I + G̃K)−1. (2.13)

The following theorem provides a sufficient stability condition based on the singular values

of G̃(s), T̃ (s), and 4(s).

Theorem 2.3 (Chiang and Safonov [41]) Consider the system in Figure 2.4. Suppose

that the perturbation4(s) has no unstable poles and that the feedback K stabilizes the nominal

plant G̃(s). If for all frequencies

σ̄(4)

σ(G̃)
σ̄[G̃K(I + G̃K)−1] ≤ 1, (2.14)

then K stabilizes the plant G.

Proof: See Chiang and Safonov [14].

Corollary 2.2 Consider the system in Figure 2.4. Suppose that the perturbation4(s) has no

unstable poles and that the feedback K stabilizes the nominal plant G̃(s). If for all frequencies

σ̄(4)

mini σ(gii)
max

i
σ̄(Ti) ≤ 1 (2.15)

where Ti = giiki(I + giiki)
−1, i = 1, · · · , ν, then K stabilizes the plant G.

Proof: From the definition of G̃ and T̃ , we have

T̃ = diag{T1, · · · , Tν}

σ̄(T̃ ) = max
i

σ̄(Ti)

σ(G̃) = min
i

σ(gii).

Consequently, the lemma is proved by applying the above theorem.

The significance of the above corollary is that the size of interconnections (4) put some

limitations on the bandwidth of the subsystems. Accordingly, the decentralization should

try to make σ(gii) as large as possible and σ̄(4) as small as possible.

2.4 Overlapping Decentralized Control

In order to expand the state space of the original system based on the Inclusion Principle, we

need some physical information about the chosen states. In the case of LFSS, input/output

10



models developed using frequency domain system identification techniques are more accurate

than the state space models based on finite element methods. The method of [23] developed

for state space models is modified to be applicable to the linear input-output models of the

LFSS.

Consider a linear time-invariant multivariable system in (2.4) The overlapping decentral-

ized control problem is to find ν local feedback control laws with dynamic compensation for

(2.4) to stabilize the resultant closed loop system. The set of local feedback laws are assumed

to be generated by the following feedback controllers:

żi = F̄izi + Ḡiȳi

ūi = H̄izi + K̄iȳi + v̄i i = 1, · · · , ν (2.16)

where zi ∈ Rni is the state of ith sub-controller, v̄i ∈ Rmi+mi+1 is the ith local external input.

F̄i, Ḡi, H̄i, K̄i are real constant matrices of appropriate size. ȳi are defined as follows:

ȳi
4
=

[
yi

yi+1

]
, i = 1, · · · , ν − 1 (2.17)

ȳν
4
=

[
yν

y1

]
(2.18)

The control input for each subsystem is obtained as follows:

ui =
1

2

[
0mi×mi−1

Imi

]
· ūi−1 +

1

2

[
Imi

0mi×mi+1

]
· ūi, i = 1, · · · , ν − 1

uν =
1

2

[
0mν×mν−1 Imν

]
· ūν−1 +

1

2

[
Imν 0mν×m1

]
· ūν (2.19)

where 0 is a matrix of appropriate size with zero elements, and I is an identity matrix

of appropriate size. The solution to the stabilization problem is based on the overlapping

decentralized fixed modes. The following definition of “overlapping decentralized fixed-modes”

is a generalization of the centralized idea of uncontrollable modes and unobservable modes of

the triple (C̄, A, B̄), and is basic to the problem of deciding whether a decentralized system

can be stabilized.

Definition 2.3 Consider the triple (C̄, A, B̄). Let K̄ be the set of block diagonal matrices

defined as follows:

K̄
4
= {K̄|K̄ = block diag[K̄1, · · · , K̄ν ], K̄i ∈ R(mi+mi+1)×(pi+pi+1), i = 1, · · · , ν} (2.20)
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where B̄ and C̄ are defined as follows:

B̄
4
= BS =

[
B̄1 · · · B̄ν

]

C̄
4
= TC =




C̄1

...

C̄ν


 (2.21)

T =




I 0 0 · · · 0

0 I 0 · · · 0

0 I 0 · · · 0

0 0 I · · · 0

0 0 I · · · 0
...

...
...

...
...

0 0 0 · · · I

0 0 0 · · · I

I 0 0 · · · 0




S = (T T T )−1T T

Then the set of overlapping decentralized fixed modes of (C, A,B) with respect to K̄ denoted

as ∧(C̄, A, B̄, K̄) is defined as follows:

∧(C̄, A, B̄, K̄) , {∩σ(A + B̄K̄C̄), K̄ ∈ K̄} (2.22)

where σ(A + B̄K̄C̄) denotes the set of eigenvalues of (A + B̄K̄C̄).

The following theorem gives a solution to the stabilization problem.

Theorem 2.4 Consider the system (C,A, B) of (2.4). Then a necessary and sufficient con-

dition for the existence of a set of overlapping decentralized controllers such as (2.16) so that

the closed loop system is asymptotically stable is that:

∧(C̄, A, B̄, K̄) ⊂ C− (2.23)

where C− denotes the open left-hand complex plane.

Proof: The original system (2.4) can be rewritten with augmented input vector ū and
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output vector ȳ as the following:

ẋ = Ax +
ν∑

i=1

Biui

= Ax +
1

2

[
B1 B2

] [
u1

u2

]
+

1

2

[
B2 B3

] [
u2

u3

]
+ · · ·+ 1

2

[
Bν B1

] [
uν

u1

]

= Ax +
ν∑

i=1

B̄iūi (2.24)

ȳ = Ty =




ȳ1

...

ȳν


 , ȳi = C̄ix, i = 1, · · · , ν

where

ūi =

[
ui

ui+1

]
, for i = 1, · · · , ν − 1

ūν =

[
uν

u1

]
(2.25)

0 is a matrix with zero elements of appropriate size, and I is identity matrix of appropriate

size.

This augmentation leads to the proof immediately by applying theorem 4.1.

Lemma 2.1 If there exists a set of decentralized control laws as in (2.5) that stabilizes the

system in (2.4), then there always exists a set of overlapping decentralized control laws as

in (2.16) that can stabilize the same system. In other words, if the system does not have

unstable fixed modes with respect to K as defined in (2.6), the overlapping control will not

introduce unstable fixed modes with respect to K̄ as defined in (2.20).

Proof : Assume that a block diagonal matrix K as defined in (2.6) has been found that

satisfies the following condition:

σ(A + BKC) ⊂ C−.

Construct K̄ as defined in (2.20) in the following way:

K̄i =
1

2

[
Ki 0

0 Ki+1

]
, i = 1, · · · , ν.
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Then

σ(A + B̄K̄C̄) = σ(A + BKC) ⊂ C−.

The Lemma is proved.

The following numerical example shows that in certain cases when the interconnections

are strong, decentralized control may fail to stabilize the system, whereas the overlapping

control method can stabilize the system.

Consider the following system:

ẋ =




−1 0 0 0 0

0 2 0 0 0

0 0 −1 0 0

0 0 0 3 0

0 0 0 0 −1




x +




1 0 0

0 1 0

0 1 0

0 0 1

0 0 1







u1

u2

u3







y1

y2

y3


 =




1 1 0 0 0

0 0 1 1 0

0 0 0 0 1


 x

with K = {K|K = diag[k1, k2, k3], k1, k2, k3 ∈ R}. In this case,

det[λI − (A + BKC)] = (λ− 2)(λ− 3)(λ + 1− k1)(λ + 1− k2)(λ + 1− k3).

Clearly the system has two unstable fixed modes, λ = 2 and λ = 3, according to the definition.

Hence the system cannot be stabilized using decentralized control. The block diagram of the

system is shown in Figure 2.5.
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1
s 1+
-----------

1
s 2–
-----------

1
s 1+
-----------

1
s 3–
-----------

1
s 1+
-----------

y1

y2

y3u3

u2

u1 +

+

Figure 2.5: Block diagram of the system

However the input-output overlapping decentralized control law

ū1 =

[
u1

u2

]
=

[
0 0

−12 0

][
y1

y2

]

ū2 =

[
u2

u3

]
=

[
0 0

−16 0

][
y2

y3

]

ū3 =

[
u3

u1

]
=

[
−2 0

0 −2

][
y3

y1

]

leads to a closed loop with poles at −6.7016, −5.6458, −1, −0.3542, and −0.2984. Hence

the system is stabilizable with the overlapping decentralized control.

Corollary 2.3 There always exists a set of dynamical controllers given by (2.16) that sta-

bilize the system (2.4) if

σ(A) ⊂ C−. (2.26)

Proof: Same as the proof of Corollary 1.

Remark: Most of the large flexible structures satisfy condition (2.26), which indicates

that the modified overlapping decentralized control is feasible for controlling LFSS.
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Chapter 3

Centralized, Decentralized, and

Overlapping Control Designs for a

Segmented Telescope

The accurate control of the segments of large segmented telescopes to achieve the desired

shape could open the way for the construction of much larger telescopes with much bet-

ter capabilities. In this chapter, we consider the centralized, decentralized and overlapping

approaches to designing controllers for shape control of a segmented telescope. In the central-

ized approach, all the segments and interconnections are considered to be a single dynamical

system. In the decentralized case, the interconnections between the segments are neglected

for control design purposes. In the overlapping decentralized approach, overlapped segments

are considered to be isolated subsystems. In each case, we design controllers using the H∞
robust control approach. In the centralized control case, the disturbances are rejected over a

wide frequency range and all performance requirements are met. The order of the centralized

controller, however, is high, which makes it difficult to implement in real time. The decen-

tralized control approach greatly reduces the computational and hardware requirements at

the expense of performance deterioration. The overlapping approach is shown to be a trade-

off between the centralized and decentralized cases that provides sufficient flexibility to meet

both performance and computational requirements.

3.1 Introduction

The performance of astronomical systems is directly related to the size of their reflectors.

Since it is very difficult to cast mirrors larger than 7 meters in diameter from a single piece

of glass, performance appears to be limited. However one way to improve the performance of

optical systems is to increase the size of the mirror by using an array of mirror segments. The

problem with segmented optics is that to perform like conventional optics, stringent position-
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ing precision is required. Optical performance requires positioning of the mirror segments to

achieve the desired mirror shape within an accuracy of a fraction of the wavelength of light.

No support structure can provide the mechanical rigidity needed to maintain the position of

the mirror segments to such an accuracy. To compensate for the mechanical imperfections,

the deformations due to the gravity and thermal loads, and to attenuate the seismic- or

maneuver-induced vibrations, the mirror segments must therefore be actively controlled.

Large Flexible Space Structures (LFSS) pose a challenging problem in control system de-

sign because of their large size, large modelling uncertainty, low rigidity, low damping, high

modal density and extremely low frequency modes. The approaches considered for the control

of LFSS have generally been directed toward “centralized control”. However, the high-order

LFSS model often results in a high-order controller which can not be implemented by real-

time parallel processing. In real-time implementation, the order of the controller is limited

by the hardware and computational complexity. For that reason, a decentralized control

approach may be more appropriate. The motivation for obtaining a decentralized controller

is simplicity of implementation which makes parallel computation feasible. In this article we

investigate three different approaches for controlling a segmented telescope developed at the

Lockheed Palo-Alto Research Laboratory which is designed to represent a LFSS system. We

considered initially the centralized approach in which the overall system is treated as a single

isolated system. We developed a centralized stabilizing controller based on H∞ robust con-

trol to meet the performance requirements. The order and complexity of the controller was

high, making real-time implementation difficult if at all possible. This difficulty motivated

the design of a decentralized scheme in which each segment is treated as an isolated subsys-

tem. The H∞ robust control approach is used to develop six controllers, one for each panel,

by neglecting all interactions between the segments. The decentralized scheme developed is

easy to implement but does not meet the performance requirements because the neglected

interconnections between the segments are rather strong and influence performance. A com-

promise between the centralized and decentralized approaches is provided by an approach

developed by Ikeda and Siljak [23], referred to as the overlapping decentralized method. This

approach works effectively when the subsystems are interconnected in an ”overlapped” way.

We have found that the dynamics of the segmented telescope have this overlapping property.

Using [23], a modified overlapping method based only on the input-output characteristics of

the system is developed and analyzed. This modified approach has been successfully applied

to the model of the segmented telescope. The performance requirements are met, and the

control laws are easy to implement in parallel.

The chapter is organized as follows: First, we describe the model of a segmented telescope

and the performance requirements. Then we formulate the control design into a standard

H∞ robust control problem, and a central controller is designed. Next we consider the

decentralized control approach and then present the modified overlapping method. Finally

we present simulation results with different control approaches.
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3.2 Description of the ASCIE test-bed and Design

Specification

3.2.1 Description of the Structure

The Advanced Structure/Control Integrated Experiment ASCIE is a laboratory experiment

to study the interaction between the controls and the structure in large flexible systems [11].

The ASCIE is an optical system. It emulates a f/1.25 Cassegrain telescope. It operates in

the visible spectrum. It comprises three main components: a truss, a primary mirror and a

secondary mirror. The truss supports the primary mirror. Some of its elements extend to

support the secondary mirror. The primary mirror is composed of seven hexagonal segments,

6 segments around a central one. The central segment is locked to the truss structure. Each

of the surrounding segments is attached to the truss at three node points through linear

electromagnetic actuators. The segments are shaped so that when they are all in their

nominal positions the surface figure is a sphere with focus at the secondary mirror. Each

segment to segment interface is instrumented with two inductance sensors. The sensors are

fixed to the back surface of each segment and measure the displacement of the edges of each

segment relative to the edges of its nearest neighbors.

A 70-state linear model was obtained and validated through a series of system identifi-

cation experiments performed by Dr. Alain Carrier and his colleagues [12]. In this chapter,

we use this model for design, analysis, and simulations. The state-space representation of

the open-loop structure is

ẋ = Ax + Bu

y = Cx + Du, (3.1)

where A ∈ R70×70, B ∈ R70×18, C ∈ R24×70, and D ∈ R24×18. State vector x consists of

modal amplitudes and modal rates. Since this model is developed using input output data,

x does not necessarily represent any physical quantities; y = [y1, y2, · · · , y24]
′ is the output

vector; yi represents the output of edge sensor Ei in mm; and i = 1, 2, · · · , 24. The 18 linear

electromagnetic actuators working in the current mode are used to provide the required force

command to keep the segments in the desired shape. The input vector u = [u1, u2, · · · , u18]
′

represents the forces applied to the structure. The dynamics of these actuators are neglected

so that the output force is represented as ui = kaIi, i = 1, · · · , 18, where Ii is the input

current to motor i in amp, ui is the output force of motor i in Newton, and ka is the force

constant.
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Di, error w. r. t

panel i

fixed central segment

active primary segment

nominal position

(a) Segments are in nominal position
(zero position error)

 (b) Primary mirror is out of shape

Figure 3.1: Primary mirror nominal shape and shape error

3.2.2 Performance Requirements

The segment alignment control system is tasked to achieve the optical quality of a single

continuous mirror. Nominally, the segments must form a sphere as shown in Fig 3.3. In the

off nominal case, the center of each segment will deviate from the nominal tangent point on

the sphere. The deviation of panel i, denoted as Di, is also defined in Fig 3.3. Error Di’s

are obtained from the 24 edge sensor measurements through a geometric transformation.

The wavelength of red light is 0.65 micron. The error has to be within an accuracy of

a fraction of the wavelength of light. Therefore the performance requirements are for the

root-mean-square (RMS) value of Di, i = 1, 2, · · · , 6 to be less than 1 micron at steady state.

3.3 Robust Controller Design: Centralized Approach

In this section, we describe the controller design technique used in the centralized control

approach. It is based on a mixed-sensitivity H∞ approach of robust control. Fig 3.4 is the

block diagram of the control system, where G(s) represents the transfer function of the plant,

K(s) represents the transfer function of the controller, d is the external disturbance, and n

is the sensor noise.

Then the system output is given by

y = S(s)d− T (s)n (3.2)

where S(s) is the transfer function from d to y, known as sensitivity function, and T (s) is

the transfer function from n to y, known as complementary sensitivity function. They are
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G(s)K(s)w=0 +

-
+

+

d

y

n

Figure 3.2: Control system block diagram

defined as follows:

S
4
= (I + GK)−1

T
4
= I − S. (3.3)

The goal of the controller is to keep the output y as small as possible in the presence of

disturbance and noise.

The disturbance is typically a low-frequency signal, and therefore it will be successfully

rejected if the maximum singular value of S(jω) is made small over the same low frequencies.

To do this, we select a scalar low-pass filter W1(s) with a bandwidth equal to that of the

disturbance and then find a stabilizing controller that minimizes ‖W−1
1 (jω)S(jω)‖∞.

Another issue of control is noise attenuation. Usually noise is a high-frequency signal, so

the maximum singular value of T (jω) has to be small at high frequencies where the noise

lies. Very similar to the above, we could select a high-pass filter W2(s) and find a stabilizing

controller that minimizes ‖W−1
2 (jω)T (jω)‖∞.

If we augment the plant G(s) with the weights W1(s) and W2(s) as shown in Fig 3.5, it

becomes a general control configuration as in Fig 3.6 with the transfer function from w to z

being

Tzw =

[
W−1

1 S

W−1
2 T

]
(3.4)

where w represents the external input and z represents the augmented output. The controller

transfer function K(s) is derived from the following minimization problem:

min
K(s)

∥∥∥∥∥
γW−1

1 S

W−1
2 T

∥∥∥∥∥
∞

(3.5)

where γ is a design parameter. This can be solved efficiently using the algorithm of Doyle et

al. [16], and by increasing γ iteratively, an optimal solution is approached.
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W1 s( ) 1–

W2 s( ) 1–G(s)

K(s)

Augmented  Plant  P(s)

u

w

v

z

+

--

Figure 3.3: Control system block diagram with augmented plant

P(s)

K(s)

w z

u v

Figure 3.4: General control configuration

From the definitions of sensitivity functions, we have

S + T ≡ I. (3.6)

Ideally, we want S(jω) small to obtain the benefits of feedback and T (jω) small to avoid

sensitivity to noise and modelling uncertainties at high frequencies. Unfortunately, these

requirements cannot be satisfied simultaneously at any frequency, as is clear from the above

equality. In addition, the state space model has RHP transmission zeros. The distance from

a RHP zero to the origin in the complex plane puts an upper limit to the frequency range

of the disturbance rejection [44]. In this case, the plant is non-square with 24 outputs and

18 inputs. To perform the H∞ optimal design, the plant has to be square. We select 18

measurements out of 24 sensors to make the RHP zero as far from its origin as possible. In

the rest of the paper, singular-value Bode diagrams will be used to measure the multi-input
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multi-output (MIMO) system performance in frequency domain. A singular-value Bode

diagram is a Bode diagram of the singular values of MIMO system transfer function. It is a

good measure of MIMO system performance since the singular values give better information

about the gain of a MIMO plant. The open-loop singular-value Bode diagram of the ASCIE

model is shown in Fig 3.7.
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Figure 3.5: General control configuration

The open-loop RMS value of the error Di, i = 1, 2, · · · , 6 is about 100 microns in the

presence of disturbance. The disturbances are typically quasi-static such as gravity loads,

thermally induced loads, actuators bias errors and drifts, steady state of outside disturbances.

The power spectrum is contained in the frequency range of 0 − 0.1rad/sec. To accomplish

the performance requirements, the control system must attain at least a 100 : 1 reduction for

disturbance over the same frequency range. In this design, the disturbance rejection is the

main concern of the performance requirements. Therefore, the control system bandwidth

is not a big issue here. However the bandwidth cannot be arbitrarily small. As we will

see in the following design, there is a crossover frequency ωS in the singular value Bode

diagram of the sensitivity function S such that ‖S(jω)‖∞ < 1 when ω < ωS, ‖S(jω)‖∞ ≥ 1

when ω ≥ ωS. Hence the disturbances with frequency less than ωS will be attenuated with

closed-loop control. For the closed-loop system, the crossover frequency ωS is always less

than the control system bandwidth, denoted as ωT . In the design, we try to push ωS to the

right as far as possible in order to attenuate the disturbance within a wide frequency range.

Therefore, ωT cannot be too small. Since the actuators have a 25 Hz bandwidth, the control

bandwidth is therefore limited to this frequency. In this design, we require the loop gain

to roll off at least at 20db per decade starting at about 100rad/sec (16 Hz) to take care of
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the modelling uncertainties at high frequencies. Also in the design, the singular value Bode

diagram of T does not necessarily have to have the same shape as that of W2(s) as long

as ‖T (jω)‖∞ ≤ W2(jω) is satisfied. We choose the following weights (also see Fig 3.3) to

perform the H∞ control synthesis using the Robust-Control Toolbox [14].

W1(s) =
(s + 2.236)2

(0.707s + 50)2

W2(s) =
10(s + 10000)

(1000s + 1)
. (3.7)

The norm in (3.5) is minimized through iterations on γ. The larger γ is, the more penalty

we put on the sensitivity function. The maximum value of γ for this problem is found to be

0.4269.

With this design, we have a sensitivity reduction of 100 : 1 at the low frequency up to

1rad/sec. The complementary sensitivity singular values start to roll off from 100rad/sec as

shown in Fig 3.8. The original model has 70 states and 18 inputs and outputs. With 3 states

added to each input-output channel by the weights W1(s),W2(s), the final augmented plant

has a total 124 states. Therefore the order of the resultant central controller is 124. More

important, this centralized control algorithm can not be implemented in parallel.
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Figure 3.6: Singular value Bode diagram with centralized control

Comment 3.1: The centralized control design presented above requires a single processor
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for real-time implementation. As the number of segments increase, in order to create a

much large primary mirror the number of computations will increase so much that a single

processor may not be adequate to do the job in real time. The choices are to either replace the

processor with a faster one or use different control methods that can allow parallel processing

that can be achieved with a set of less fast and lower cost processors. In the following sections

we explore this second possibility by proposing a decentralized and overlapping decentralized

control design approaches.

3.4 Decentralized Control Design

As mentioned in the previous section, the H∞ central controllers designed for LFSS have the

same order as that of the augmented model of the structure. Since the controller order is

limited by real-time implementation constraints, the order of the mathematical model of the

structure must be kept as small as possible, or in the case where the mathematical model

of the structure is of large order, decentralized control together with parallel processing can

greatly reduce the computational effort. In this case, we are interested in a decentralized

control technique where each sub-controller controls the three actuators of each segment

and uses measurements from the sensors of the corresponding segment. The problem is

formulated as follows.

Consider a linear time-invariant multivariable system with ν local control stations de-

scribed by:

ẋ = Ax +
ν∑

i=1

Biui

yi = Cix, i = 1, · · · , ν (3.8)

where x ∈ Rn is the state and ui ∈ Rmi and yi ∈ Rpi are the input and output, respectively,

of the ith local control station (i = 1, · · · , ν). The matrices A,Bi and Ci are real, constant,

and of appropriate size. The decentralized control problem is to find ν local feedback control

laws with dynamic compensation for (3.8) to stabilize the resultant closed-loop system. The

set of local feedback laws is assumed to be generated by the following feedback controllers:

żi = Fizi + Giyi

ui = Hizi + Kiyi + vi, i = 1, · · · , ν (3.9)

where zi ∈ Rni is the state of ith local controller and vi ∈ Rmi is the ith local external input.

Fi, Gi, Hi, and Ki are real constant matrices of appropriate size.

The solution to the above stabilization problem is discussed in the previous chapter We

apply the standard two-block mixed-sensitivity H∞ [41] technique to each panel of the
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segmented telescope. In terms of decentralized control, the local controller ki(s) is designed

independently and then all the loops are closed. One problem with this technique is that

the interactions may cause the overall system to be unstable even though the local loops are

stable. Sufficient conditions for closed-loop stability are also given in the previous chapter.

We tried the following set of weighting functions for each panel, and the design results are

shown in Fig 3.9.

W1(s) =
(s + 0.05)2

(0.707s + 5)2

W2(s) =
20(0.001s + 1)

(1000s + 1)

With decentralized control, the orders of local controllers are 30, 30, 33, 34, 34, and 30, respec-

tively. Disturbances are rejected over the frequency range 0 − 0.1rad/sec. The closed-loop

system is not robust at frequencies between 100 and 500rad/sec. The reason for this is that

we neglected the interconnections between subsystems. By analyzing the transfer function of

the plant, we found that the subsystems are strongly interconnected at frequencies between

100 and 300rad/sec. Even at low frequencies, the adjacent panels are strongly coupled to

each other. In the following section, we proposed a new method for dealing with the problem

of strong interconnections in decentralized control.
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Figure 3.7: Singular value Bode diagram with decentralized control
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3.5 Overlapping Decentralized Control Design

In the control of large-scale systems, decentralized control is often the only feasible method

for handling the computational complexity; however, subsystems are usually not completely

decoupled, as in the case of traffic systems, power systems, chemical processes, and large space

structures. They are mostly interconnected in an overlapped fashion, i.e., the subsystems

have stronger interconnections with the adjacent subsystems than with the ones that are not

adjacent. Ikeda and Siljak came up with an idea that involves expansion of the input, state

space, and output to isolate the overlapped subsystems. The control laws are built for the

expanded systems and applied to the original system. Overall stability is guaranteed under

certain conditions. The fundamental theory behind this idea is the Inclusion Principle [43];

however, to expand the state space of the original system, we need some physical information

about the chosen states. In the case of LFSS, input/output models developed using frequency

domain system identification techniques are more accurate than the state-space models based

on finite element methods. The method of [23] developed for state-space models is modified

to be applicable to the input-output models of the LFSS. The controller dynamics are given

by:

żi = F̄izi + Ḡiȳi

ūi = H̄izi + K̄iȳi + v̄i i = 1, · · · , ν (3.10)

where zi ∈ Rni is the state of ith sub-controller and v̄i ∈ Rmi+mi+1 is the ith local external

input. F̄i, Ḡi, H̄i, K̄i are real constant matrices of appropriate size. ȳi are defined as follows:

ȳi
4
=

[
yi

yi+1

]
, i = 1, · · · , ν − 1 (3.11)

ȳν
4
=

[
yν

y1

]
. (3.12)

The control input for each subsystem is obtained as follows:

ui =
1

2

[
0mi×mi−1

Imi

]
· ūi−1 +

1

2

[
Imi

0mi×mi+1

]
· ūi, i = 1, · · · , ν − 1

uν =
1

2

[
0mν×mν−1 Imν

]
· ūν−1 +

1

2

[
Imν 0mν×m1

]
· ūν (3.13)

where 0 is a matrix of appropriate size with zero elements and I is an identity matrix of

appropriate size. The solution to the stabilization problem is discussed in Chapter 2. The

ASCIE model dynamics has the overlapping characteristics. The overlapping method is

applicable. We choose the following set of weight functions for each overlapped subsystem
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to perform H∞ control design. The results are shown in Fig 3.10.

W1(s) =
(s + 0.02)2

(0.707s + 2)2

W2(s) =
20(0.001s + 1)

(1000s + 1)
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Figure 3.8: Singular value Bode diagram with overlapping decentralized control

The orders of the local controllers are 58, 60, 58, 59, 57, and 56, respectively. The perfor-

mance requirements are met as seen in Fig 3.10, and computation with parallel processing

is faster than that of the central controller. However, the performance of the centralized

scheme is better than that of the overlapping method when we consider the ability of reject-

ing disturbance in the frequency range of 0 − 1rad/sec. In the overlapping approach, the

closed-loop bandwidth has been pushed back to suppress the resonance which narrows the

frequency range of disturbance rejection.

3.6 Simulation Results

To demonstrate our results, the different control schemes are simulated using the ASCIE

model in the time domain. Disturbances are force/torques in nature. The disturbances are
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typically quasi-static such as gravity loads, thermally induced loads, actuator bias errors and

drifts, steady-state of outside disturbance. The effects of these disturbances are position

errors which appear at the edge sensor measurements in the open-loop case. The RMS

values of these errors are about 100 microns. the closed-loop system has to achieve a 100 : 1

disturbance attenuation which brings the RMS values to about 1 micron. In the simulation,

for the sake of simplicity, disturbances with 100 micron magnitude are directly added to the

measurements of the edge sensors to emulate the effects of the real disturbances. Therefore,

if the closed-loop errors are about 1 micron in magnitude, we can say the 100 : 1 disturbance

attenuation is achieved. Three different scenarios are simulated here. First, a constant

disturbance with magnitude 100 microns is applied to all 18 channels of the telescope. Second,

a sinusoidal disturbance with magnitude 100 microns and frequency 0.1rad/sec is applied to

all 18 channels of the telescope. Finally, a sinusoidal noise with magnitude 1 microns and

frequency 400rad/sec is added to all the sensor measurements of the telescope. The time

domain results are shown in Figs. 3.11-3.13.

In the centralized control case, as shown in Fig 3.11, the closed-loop output of each

channel to the disturbance is less than 1 micron after 1 second, which means the disturbance

within the frequency range of 0 − 0.1rad/sec has been reduced by 100:1. The closed-loop

output of each channel to the sensor noise is less than 0.3 microns which means the loop gain

is less than 1 at 400rad/sec. The closed-loop system is robust at high frequencies (beyond

100rad/sec), as shown in Fig 3.8.

In the decentralized control case, shown in Fig 3.12, the closed-loop output of each channel

to both constant and sinusoidal disturbances of 0.1rad/sec is less than 1 micron after 15

seconds, which means the disturbance within the frequency range of 0−0.1rad/sec has been

reduced by 100:1. However, the sensor noise is not attenuated at 400rad/sec. Therefore, the

closed-loop system is not robust at high frequencies, as shown in Fig 3.9, and the performance

requirements are not met.

In the overlapping decentralized control case, shown in Fig 3.13, the closed-loop output of

each channel to both constant and sinusoidal disturbances of 0.1rad/sec is less than 1 micron

after 5 seconds, which means the disturbance within the frequency range of 0 − 0.1rad/sec

has been reduced by 100:1. The closed-loop output of each channel to the sensor noise is

less than 0.01 micron. Hence the sensor noise is attenuated at 400rad/sec, which means the

loop gain is less than 1 at 400rad/sec. So the overlapping method can successfully reject the

disturbances within the frequency range of 0−0.1rad/sec. In the meantime, the sensor noise

is attenuated and the closed-loop system is robust with respect to modelling uncertainties

beyond 100rad/sec frequency, as shown in Fig 3.10, in contrast to the decentralized control.

The lower order of the local controllers makes computation faster with parallel processing

compared to the centralized control.

Centralized, decentralized and overlapping approaches based on H∞ robust control de-
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Figure 3.9: Responses of closed-loop system with centralized control

sign are used to develop control laws for a validated model of a large segmented telescope.

The centralized control design meets all the performance and robustness requirements but is

difficult to implement in real time due to the high order of the controller. The decentral-

ized control design requires less computational effort and enables parallel implementation in

real time. However, its performance and robustness properties lag behind those of the cen-

tralized scheme. A compromise between the centralized and decentralized approaches is the

overlapping control design, which has been shown to meet the performance and robustness

requirements and can be easily implemented in real time using parallel processing.
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Figure 3.10: Responses of closed-loop system with decentralized control
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Figure 3.11: Responses of closed-loop system with overlapped decentralized control
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Chapter 4

Description Of A Segmented

Telescope Test-Bed

The Structures, Pointing And Control Engineering (SPACE) laboratory Test-bed is a phys-

ical model of a segmented telescope. The test-bed is used to study in an integrated way

problems associated with control of large, space-borne, segmented optical telescopes such as

modelling, identification, control of multi-input multi-output (MIMO) systems, structural dy-

namics, control-structure interaction, and disturbance rejection. Real-time control concepts

for segmented telescope shape control are being developed and validated over the test-bed.

The SPACE laboratory is located at California State University, Los Angeles (CSULA),

and is funded by NASA. In this chapter we describe the SPACE test-bed instrumentation,

the features of the equipment and their performance characteristics, hardware interfaces,

controller implementation, and overall system architecture.

4.1 Introduction

Future space-borne astronomical missions require increasing levels of optical performance and

accuracy, which necessitates larger and larger telescope reflectors. Due to the size, weight and

power limitations, as well as the limitations associated with the launch vehicles, the future

missions would necessarily employ segmented reflectors instead of monolithic ones that are

cast from a single piece of glass. The challenge is to make the segmented reflector emulate

the optical properties of a monolithic unit. This requires an active segment-alignment control

system for shape control, and a precision pointing system for achieving pointing accuracy.

To study the problems associated with real-time control of large space-borne segmented

optical systems, NASA has funded an interdisciplinary team of faculty and students from

California State University, Los Angeles (CSULA), University of Southern California (USC),

California State University, Long Beach (CSULB), and University of California, Berkeley to

design and fabricate a test-bed or a model of a segmented telescope at the SPACE lab of
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Figure 4.1: SPACE Test-bed Hardware Interface Diagram

CSULA.

The work done on the test-bed up to now includes mechanical design, structural analy-

sis, and development of instrumentation and computer architecture, development of system

identification techniques and control algorithms, and validation of the control concepts on

the test-bed. Continuing work includes development and validation of advanced technologies

using high-speed parallel processing for decentralized control, where smaller controllers are

developed for individual segments, which are then used together for the shape control of the

overall telescope. Future work will include precision pointing, fault identification, controller

reconfiguration.

The following sections describe in detail the test-bed instrumentation, the hardware in-

terfaces, and the overall system architecture. The data presented in the paper was taken

from hardware manuals and data sheets provided by manufacturers, and earlier reports from

the SPACE laboratory.

4.2 Hardware Interface and Description of the Structure

and Equipment

Fig 4.1 shows a schematic of the hardware interface of the SPACE test-bed including the

structure, the electronics and the controller implementation. These components are described

in detail in the following.

Fig 4.2 shows the features of the telescope structure. The structure of the segmented
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Figure 4.2: View of the Structure Showing the Actuators and Sensors

telescope test bed consists of three main parts: a primary mirror, a secondary mirror, and a

truss. The main telescope consists of a 2.4 m focal length Cassegrain optical configuration

consisting of a 2.66 m actively controlled primary and an active secondary. The primary

mirror is segmented and consists of 7 hexagonal segments. Fig 4.3 shows the dimensions of

the structure. Both the primary and the secondary mirrors are completely instrumented with

a set of custom designed high-performance actuators, and a set of high bandwidth position

sensors. These sensors provide information about the shape of the primary for use in the

shape control system, and about the position of the secondary with respect to the focal point

of the telescope for use in pointing system.

4.2.1 Primary Mirror

The primary mirror is a 2.61 meters diameter dish supported on a lightweight, flexible truss

structure. The optical system emulates a f/2.4 meters Cassegrain telescope. The primary

mirror consists of seven hexagonal segments mounted on a lightweight flexible truss struc-
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ture. There are 6 peripheral segments mounted around a fixed central segment. On a real

segmented telescope the segments would be made of mirrors. On the SPACE test-bed,

the segments are made of Aluminum with a honeycomb-type core. These segments emulate

the mirrors of an optical telescope for the sake of shape control demonstration. The cen-

tral segment is locked to the isolation table. The six peripheral segments are each actively

controlled in three degrees of freedom (DOF’s), namely piston, tilt (pitch), and tip (roll)

by linear electromagnetic precision actuators. The three degrees of freedom (DOF’s) are

graphically illustrated in Fig 4.4. Each peripheral segment is attached to the truss at three

node points through its three actuators. By actively controlling the position and attitude of

the six peripheral segments with reference to the stationary central segment, the actuators

maintain the primary mirror shape close to the perfect parabolic surface. The objective of the

telescope shape control system is to maintain the shape of the primary mirror to an accuracy

of less than 1 micron RMS surface distortion with respect to a perfectly parabolic surface.

When the segments are in their nominal positions, the primary mirror surface resembles a

parabolic reflector with its focal point located at the secondary mirror.

Twenty-four inductance sensors are used to measure the relative displacements between

the segments. There are 2 inductance sensors between every pair of segments, both peripheral

and the central segment with one connected to each segment measuring its displacement with

respect to the other. Thus there are a total of 24 edge sensors. Collocated with each actuator

is a position sensor, 3 per actively controlled segment for a total of 18 collocated sensors.

The primary and secondary mirror segments are both actively controlled, and interact

with the actuators, sensors and the supporting truss structure. The control algorithm uses
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the outputs of the edge sensors to generate actuator commands for primary mirror shape

control. Fig 4.2 is a view of the structure showing the actuators and the sensors mounted

below the primary panel. The picture was taken in the SPACE laboratory, and shows other

elements of the test-bed also, such as the secondary mirror, the supporting truss, and the

isolation platform.

4.2.2 Secondary Mirror

The secondary mirror of the test-bed is located 2.4 m above the primary mirror. It consists of

an actively controlled mirror whose housing is supported by a secondary truss. The secondary

truss consists of six aluminum struts that are attached to the upper part of the primary truss

at three points. The mirror is hung from its housing by means of isolation springs

Like the primary mirror segments, the secondary mirror too has three degrees of freedom

in the form of a tip, a tilt, and a piston motion. It is equipped with 3 actuators to provide 3-

axis active control. The tip and tilt motions provide beam steering by correcting the angular

misalignment between the primary and the secondary mirror. The piston motion aligns the

mirror to the focal plane of the telescope. It has 3 sensors that provide information about the

secondary mirror attitude. The secondary mirror is a six-sided pyramidal aluminum mirror

as shown in Fig 4.5

4.2.3 Truss Structure

The structure has been designed to emulate a strong, lightweight truss whose structural-

dynamical properties characterize those of a large, flexible, space-borne optical system. Such

properties include low frequency modes, high-modal density. The truss is made of thin-wall
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stainless steel tubing to achieve the highest strength with the lowest mass.

4.2.4 Isolation Platform

The SPACE telescope structure is supported on a triangular table that isolates it from any

vibrations from the ground. This table is called the isolation platform, and is an I-2000 series

Stabilizer and Laminar Flow Isolator made by Newport Company. The platform is made of

an aluminum honeycomb core with a stainless steel top skin and bottom skin. It is mounted

on three pneumatic cylinders providing a passive isolation system for the structure. Fig 4.6

shows details of the isolation platform.

4.2.5 The Optical Scoring System

In an actual Cassegrain-configuration telescope, the primary mirror collects the incident light

and reflects it to a secondary mirror. The secondary mirror will in turn reflect the light to

a focal plane where the image is collected. The quality of the reflected image is a measure

of the optical performance. For a segmented reflector, a misalignment of either the primary

mirror segments or the secondary mirror can cause image quality degradation. Because the

SPACE test-bed is not a true optical system in the sense that the segments are not actual

mirrors, an optical scoring system is used to provide an independent verification of the shape

of the primary mirror other than that provided by the edge sensors.

The optical scoring system illustrated in Fig 4.7 works as follows: A Helium-Neon laser

source in the center of the primary mirror aims a calibrated laser beam at the secondary

mirror. The secondary mirror, which has a six-sided pyramidal design (see Fig 4.5), splits

the incoming laser beam into six sub-beams and directs each subbeam to the corresponding

peripheral panel. A small mirror, one inch in diameter, mounted on the edge of each pe-
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Figure 4.7: Optical Scoring System

ripheral panel, returns each sub-beam back to the secondary mirror, which in turn reflects it

back to the center of the primary mirror. The optical sensors located on the central segment

detect any deviation of the reflected beam from a reference. The optical scoring system con-

sists of the laser source, the optical module and the small mirrors, and provides a measure

of pointing performance. The laser source, the optical sensor module and the center panel

are mounted on a tripod shaped housing that is fastened directly to the isolation platform,

thus dynamically isolating the optical scoring system from the rest of the structure.
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4.2.6 Sensors

The SPACE test-bed uses a total of 42 sensors. The sensors are KDM- Series 8200, model

6U1 variable impedance transducers provided by Kaman Instrument Corp. A variable

impedance transducer is a device that applies a stimulus (the field produced in a coil by

a single frequency AC current) to a conductive target, measures the total opposition to that

field by a target, and converts it into an electrical signal proportional to the position of the

target relative to the reference. Kaman 8200, 6U1 sensors are low noise, high-resolution

inductive transducers with a wide measuring range and frequency spectrum.

The sensors are housed in five racks: there is a master rack and four slave racks, each

housing nine channels for a total of 45 channels. Out of these 45 channels, forty-two are used

for the 42 sensors used on the SPACE test-bed. Of these forty-two position sensors, eighteen

sensors are collocated with the actuators to provide information about the relative position

of the actuator shaft and it’s mounting platform. In addition, twenty-four edge sensors are

used to measure the relative displacements of the edges of adjacent segments. Each segment

is fitted with edge sensors on the back surface, which measure its edge displacement relative

to the nearest segment edge. These sensor measurements are used by the control system to

drive the actuators for shape control of the primary mirror.

Fig 4.8 shows the data path for the routing of the sensor data through the test-bed. The

edge sensor information indicates the displacement of the peripheral segments compared to

a perfect spherical surface, or the shape error. The 24 edge position sensors are used by

the control algorithm to generate the actuator commands for segment alignment. The shape

control algorithm processes the edge sensor information or the shape error, to obtain the

needed axial displacement for the 6 actuated (peripheral) segments relative to the reference

(fixed central) segment. The digital signal processor computes the required displacements,

and sends force commands to the 18 segment actuators in order to reconfigure the peripheral

segments to the desired spherical shape. There is no measurement of the displacement of

an individual segment with respect to the support structure but only with respect to the

fixed central segment that acts as the reference. The collocated sensors may be used for an

independent verification of the associated actuator command.

4.2.7 Segment-Positioning Actuators

The primary mirror shape control is achieved through 18 actuators, three per peripheral

segment. In order to achieve precise shape control of the primary mirror, we need high

performance segment positioning actuators. The actuators are required to have the following

features:

• Extremely low noise level,

• Generate a substantial force over a wide mechanical range,
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Figure 4.8: Routing of the Sensor Data through the Test-Bed
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• Support the weight of a segment in a 1-g field in order to simulate an actual space

telescope environment,

• A bandwidth sufficient to accommodate the spectrum of expected disturbance,

• Actuate free of friction,

• Be modular and compact in size, provide an easy interface with the structure,

• Minimize thermal energy dissipation.

In order to meet all of the above requirements, a custom-designed high-performance

actuator has been developed for the SPACE test-bed by Northern Magnetics. The model

ML2-3002-100LB actuators are identical linear electromagnetic force actuators with their

own integral control to apply the exact force needed to get the commanded displacements

for the overall shape control. The actuator bandwidth is 100 Hz, and the maximum allowable

actuator force is 53.576 Newton (equivalent to about 12 pound-force). Custom designed disk

flexures are used instead of conventional bearings to eliminate friction. Additionally, an off

load spring is used to minimize the amount of actuator force needed when the actuator is

mounted below the panel and is supporting the weight of the panel. The off load spring also

aids in thermal energy dissipation. The actuators are fitted with collocated position sensors.

On the SPACE test-bed there are 18 of these actuators mounted on the primary mirror,

3 per peripheral segment. The actuators are attached below the primary mirror segments as

shown in Fig 4.2.

4.2.8 Actuator Amplifiers

The test-bed uses GA4555P Linear Amplifiers made by Glentek. The GA4555P linear ampli-

fier is a modular, high power, high bandwidth servo amplifier that has been designed for use

with permanent-magnet actuators. The actuator amplifier receives the output of the DSP

board through the D/A converter and serves as the intermediate stage between the output

of the digital-to-analog-converter and the actuator.

The GA4555P linear amplifier can be operated in both the velocity and current mode

since it is able to accept single-ended as well as differential input signals for amplification.

For the SPACE test bed, it is used in the current mode.

4.2.9 Digital Signal Processing System

Fig 4.9 shows the overall system architecture of the SPACE test-bed. The computer and

graphics set-up includes a DSP board, a Dell personal computer (PC) workstation with

a Windows NT operating system, disk storage for expanding the memory capacity of the
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DSP board, and the graphical display of the Kaman sensor racks. In addition there is an

input/output (I/O) unit consisting of A/D and D/A converters.

The SPACE test-bed uses Pentek Model 4285, Digital Signal Processor (DSP) Board.

The DSP board can be configured with up to eight TMS320C40 (numbered 0-7 or A-H)

processors per board for high-speed parallel processing power, hence the name ”Octal ’C40

VME board”. On the SPACE test-bed we are presently using only four TMS320C40 pro-

cessors (numbered 0,1,4,5 or A, B, E, F). The 4285 DSP board offers communication ports

for high-speed connections to the host computer, and other modules such as the A/D and

D/A converters.

The DSP is the main computational unit and is responsible for real-time control pro-

cessing, signal generation, and real-time memory. It is fully programmable from the PC

Host. The PC host is used to run the control design and validation experiments on the

DSP. The DSP board analyzes the data from sensors after A/D conversion, and generates

a digital output to correct for any segment misalignment. This digital output is converted

to an equivalent analog output (current), which is amplified and input to the actuators for

panel shape correction.

The Pentek model 6102 is a dual Analog-to-Digital (A/D) and Digital-to-Analog (D/A)

converter (DAC) package. It is a high-performance 8-channel, 16-bit converter for VME-bus

data acquisition, control, and DSP applications. Model 6102 offers differential inputs for

the ADC’s, 16-bit resolution, and sampling frequencies up to 250 kHz for both ADC’s and

DAC’s .

In order to incorporate the ADC’s and DAC’s into the system, we need to make sure

that the specifications of the sensor’s analog output signal match the specifications of the

ADC, and likewise match the DAC’s output to the actuator’s input signal. On the SPACE

test-bed there are eight dual A/D -D/A boards. Each board provides 8 channels of A/D

and D/A conversion. The A/D can receive either single-ended or differential analog inputs,

and the D/A produces single-ended analog output. Out of the total 64 channels available,

currently 42 A/D channels are being used for converting analog data from the 24 edge and

18 collocated sensors. Out of the 64 D/A channels 18 are being used to convert the actuator

commands from the DSP board into analog outputs.
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Figure 4.9: SPACE Test-Bed Overall System Architecture
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Chapter 5

Model Identification of A

Segmented Telescope Test Bed

In this chapter a method of frequency domain system identification is presented based on the

estimation of a scalar transfer function as a ration of two polynomials. It is a generalization

of the well-known SK iteration. The main contribution of this approach is by dividing the

frequency domain data into different bands, the resonant frequencies can be located precisely.

This approach is successfully applied to the model identification of a large segmented tele-

scope test bed. The state-space model of each segment mirror of the test bed is constructed

and proved sufficiently good for the decentralized control design.

5.1 Introduction

Extensive research has been conducted in the active control of large flexible structures [35,

13, 6, 5, 8, 17, 15, 7, 12, 34]. Among those, segmented telescopes are major examples of

structures where the size and the complexity issues arise because an array of mirror segments

are assembled to perform like one big mirror reflector [33]. Single mirror telescopes would be

replaced by large size segmented telescopes that fly a suite of mirrors working in conjunction

with each other. Theoretically, such an imaging system would be more robust since as many

as two mirrors could break down with no impact to data collection. The difficulty right now

is developing the control mechanism for the mirrors to ensure the exact same light wave front

arrives simultaneously on each mirror and interpreting the data. To achieve a high control

performance on such a structure usually requires an accurate model. Typically such systems

are lightly damped and have high-order models with many inputs and outputs as needed.

For structure design purposes, the finite element method provides accurate enough models.

Then static and dynamic tests on the structure can be performed to refine the finite element

model, for instance, tuning the structural modes and mode-shape, etc. However, the model

developed from this approach may not be accurate enough for the control system design.
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In practice, models identified directly from experimental data are more preferred by control

engineers. Even though there are a great number of time-domain identification techniques

in the literature [36], if the excitation of the system is well designed, e.g., periodic input or

frequency-sweeping sine, estimation of transfer function by fitting complex frequency data

has several advantages over the model synthesis in time domain as pointed in [40]: a) Easy

noise reduction b) Data reduction: a large number of time-domain samples are replaced

by a small number of spectral lines c) When using a discrete Fourier transform (DFT) to

calculate the spectra, the frequency-domain noise is asymptotically (number of time domain

samples going to infinity) complex distributed d) No initial state estimation of the system

needed e) Model validation: Using periodic excitations one has very good point estimates of

the frequency response function f) Easy to combine data from different experiments. The

problem of fitting a transfer function or transfer function matrix has been addressed by many

authors [18, 15]. Based on Least Square (LS) estimation techniques, as used by Levi in [32]

and further refined by Sanathanan and Koerner in [42], multivariable frequency domain

curve fitting has been formulated in the literature [6, 34]. Motivated by Bayard’s multi-band

approach [5], this paper presents a method that is a generation of the SK approach. As being

used by many people, it is often necessary to express a scalar transfer function of a linear

time invariant system as a ratio of two frequency dependent polynomials, namely,

G(jω) =
N(jω)

D(jω)
=

bn−1(jω)n−1 + · · ·+ b1(jω) + b0

(jω)n + an−1(jω)n−1 + · · ·+ a1(jω) + a0

assuming G(s) is a strictly proper transfer function. Based on the Least Square (LS) es-

timation technique, Levy [32] formulated a linear LS method by minimizing the following

error,

Q =
N∑

k=1

|G(jωk)D(jωk)−N(jωk)|2

However, the above method is naturally a weighted LS method where the data at high

frequencies have more influence on the fitting error. It has serious deficiencies as pointed out

by Sanathanan and Koerner in [42]. First, if the transfer function has to be determined for

frequencies extending several decades, the data at low frequencies have very little influence.

Hence, a good fit cannot be obtained at lower frequencies. Second, if G(s) has poles in the

complex s-plane such that |D(jω)|2 could vary widely throughout the experimental points,

large errors would be introduced. To remove the weighting in Q, Sanathanan and Koerner

proposed an iterative procedure which minimizes the following error in the Kth iteration,

QK =
N∑

k=1

∣∣∣∣
G(jωk)DK(jωk)−NK(jωk)

DK−1(jω)

∣∣∣∣
2

The subscript K denotes the iteration number. Again in each iteration, minimizing QK with
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respect to the coefficients of D(s) and N(s) involves only linear equations. Iteration starts

with D0(s) = 1 which is Levy’s method. Here we proposed a different method. By dividing

the frequency domain data into different bands, we try to fit the complex data in a certain

band by taking the previous fitting results into account as shown in Fig 5.1. By doing this,

the resonant frequencies can be well isolated and a good fit can be obtained with a wide

frequency range. In section 2, we formulate the error function and present the algorithm.

In section 3, an example is given to demonstrate the effectiveness of this proposed method.

In section 4, we applied this method to a segmented telescope test bed for the purpose of a

decentralized control design. By isolating each segment mirror as an independent subsystem,

we construct a state-space model for each segment successfully.
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Figure 5.1: Sections of complex frequency domain data

5.2 Problem Formulation and Algorithm

In this section we formulate the fitting error for the least square curve fitting. As shown

in Fig 5.1, the data are divided into a number of sections accordingly based of the ex-

perimental data. In the first band, we fit the data with an estimated transfer function

G1(s) = N1(s)/D1(s) within the frequency range of [ω0, ω1] using Levy’s method. The error

is formulated as the following

Q1 =

n1∑

k=1

|G(jωk)D1(jωk)−N1(jωk)|2
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where G(jω) is the experimental data and n1 is the length of the data within the band.

The minimization of the above error can be achieved by solving the following set of linear

algebraic equations of the form

G(jω1)
[
(jω1)

n + an−1(jω1)
n−1 + · · ·+ a1(jω1) + a0

]

− [
bn−1(jω1)

n−1 + · · ·+ b1(jω1) + b0

]
= 0

G(jω2)
[
(jω2)

n + an−1(jω2)
n−1 + · · ·+ a1(jω2) + a0

]

− [
bn−1(jω2)

n−1 + · · ·+ b1(jω2) + b0

]
= 0

...

G(jωn1)
[
(jωn1)

n + an−1(jωn1)
n−1 + · · ·+ a1(jωn1) + a0

]

− [
bn−1(jωn1)

n−1 + · · ·+ b1(jωn1) + b0

]
= 0

The above equations can be rewritten as the following form

A1 · x1 = b1

where,

A1 =




G(jω1)(jω1)
n−1 · · · G(jω1)(jω1) G(jω1 −(jω1)

n−1 · · · −(jω1 −1

G(jω2)(jω2)
n−1 · · · G(jω2)(jω2) G(jω2 −(jω2)

n−1 · · · −(jω2 −1
...

...
...

...
...

...
...

...

G(jωn1)(jωn1)
n−1 · · · G(jωn1)(jωn1) G(jωn1 −(jωn1)

n−1 · · · −(jωn1 −1




x1 = [ an−1 · · · a1 a0 bn−1 · · · b1 b0 ]T

b1 = [ −G(jω1)(jω1)
n −G(jω2)(jω2)

n · · · −G(jωn1)(jωn1)
n ]T

In the second data band, we fit the data G(jω)/G1(jω) with an estimated transfer func-

tion G2(s) = N2(s)/D2(s) within the frequency range of [ω1, ω2] by minimizing the following

error

Q2 =

n2∑

k=n1+1

∣∣∣∣∣
G(jωk)
G1(jωk)

D2(jωk)−N2(jωk)

D1(jω)

∣∣∣∣∣

2

where n2−n1 is the length of the data within the second band. Notice that, by introducing

D1(s) into the above error, deficiencies of Levy’s approach are eliminated while no iteration

is required compared to the SK iteration.
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In general the fitting error in data section is formulated as the following

QL =

nL∑

k=nL−1+1

∣∣∣∣∣∣

G(jωk)∏L−1
i Gi(jωk)

DL(jωk)−NL(jωk)

DL−1(jω)

∣∣∣∣∣∣

2

And the coefficients of the polynomials can be solved through the following algebraic equa-

tions in the least square sense

AL · xL = bL

where,

AL =




g(jωnL1
+1)(jωnL−1+1)(n−1)

d(jωnL−1+1
· · · g(jωnL1

+1)

d(jωnL−1+1
− (jωnL−1+1)(n−1)

d(jωnL−1+1
· · · −1

d(jωnL−1+1)

g(jωnL1
+2)(jωnL−1+2)(n−1)

d(jωnL−1+2
· · · g(jωnL1

+2)

d(jωnL−1+2
− (jωnL−1+2)(n−1)

d(jωnL−1+2
· · · −1

d(jωnL−1+2)

...
...

...
...

...
...

g(jωnL
)(jωnL

)(n−1)

d(jωnL
· · · g(jωnL

)

d(jωnL
− (jωnL

)(n−1)

d(jωnL
· · · −1

d(jωnL
)




xL = [ an−1 · · · a1 a0 bn−1 · · · b1 b0 ]T

bL =
[
−g(jωnL1

+1)(jωnL−1+1)n

d(jωnL−1+1)
−g(jωnL1

+2)(jωnL−1+2)n

d(jωnL−1+2)
· · · −g(jωnL

(jωnL
)n

d(jωnL
)

]T

d(jωk) ,
L−1∏
i=1

Di(jωk), k = nL−1 + 1, · · · , nL

g(jωk) , G(jωk∏L−1
i=1 Gi(jωk)

, k = nL−1 + 1, · · · , nL

5.3 Simulation Results

A numerical example is given in this section to illustrate the performance of the proposed

algorithm. The transfer function of a SISO LTI system is given as

G(jω) =
N(jω)

D(jω)
=

b2(jω)2 + b1(jω) + b0

(jω)6 + a5(jω)5 + · · ·+ a1(jω) + a0

where,

b0 = 207360000, b1 = 960000, b2 = 640000

a0 = 256000000, a1 = 9792000, a2 = 4724160

a3 = 50288, a4 = 10548, a5 = 24, a6 = 1

The Bode diagram is shown in Fig 5.1. In order to measure the transfer function, the
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system is excited by a series of random signals and the input/output are recorded to analyze

the transfer function. The input signal is a series of random binary signal. The output is

corrupted by a random Gaussian noise with 0 mean and variance of 0.0011. The transfer

function is estimated and its Bode diagram is plotted in Fig 5.2.
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Figure 5.2: Experimental Bode diagram

Here we can see that at high frequencies the output is dominated by the noise, therefore

the experimental data is no longer valid. Hence the fitting should be stopped at that point.

We cut the data into three bands as shown in Fig 5.1. We fit the first band with G1(s) and

the result is shown in Fig 5.3. In the second band, we try to fit the data with G1(s)G2(s) as

in Fig 5.4 . Finally, with the data in the third band we fit the data with G1(s)G2(s)G3(s)

as in Fig 5.5.

The comparison of poles and zeros are shown below:
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Figure 5.3: Fitting in band 1 with G1(s)

Poles of Poles of Zeros of Zeros of
real model estimated model real model estimated model

-10.00 + 99.50j -9.34 + 99.58j -0.75 + 17.98j -0.92 + 18.01j
-10.00 - 99.50j -9.34 - 99.58j -0.75 - 17.98j -0.92 - 18.01j
-1.00 + 19.97j -1.19 + 20.06j -242.29
-1.00 - 19.97j -1.19 - 20.06j
-1.00 + 7.94j -1.11 + 7.90j
-1.00 - 7.94j -1.11 - 7.90j

-169.16

Table 5.1: Comparison of poles and zeros

5.4 System Identification for SPACE Test Bed

As shown in the Fig 4.2, the primary mirror consists 7 small mirrors. The central mirror is

fixed, and the other six peripheral mirrors need to be aligned in a desired shape with the help

of control system. Essentially such a large flexible structure makes control system design a

very challenging task since the dynamic model is very complicated. In this case decentralized

control is a natural option for such a structure [33] by treating each mirror segment as an

isolated subsystem and neglecting the interactions between segments. In order to implement

the decentralized control, a model identification process has to be carried for each of the six

mirror segments. In order to do that, we excite one of the three actuators under that mirror

segment at one time, and collect the measurements of the six surrounding edge sensors that

can sense the motion of that mirror directly. Here we take mirror segment 1 for example to
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Figure 5.4: Fitting in band 2 with G1(s)G2(s)

develop the model. A chirp signal with frequency increasing from 1Hz to 20Hz was applied

to actuator 1 first, then actuator 2, and 3 accordingly. Each time the outputs of edge sensor

1, 2, 13, 14, 23, and 24 are collected. Then the transfer functions are estimated with the

input and output data using Welch’s averaged periodogram method. The least square curve

fitting method introduced in section 4.2 is used to fit the data, hence the numerator and

denominator polynomials are obtained. After all the individual transfer function ĝi,j(s)’s are

estimated, we can construct the state-space model in the following way.

Let the state space realization of ĝ1,1(s) be

ẋ1,1 = A1,1 · x1,1 + b1,1 · u1

y1 = cT
1,1 · x1,1

(5.1)

In general, the state space realization of ĝi,j(s) be

ẋi,j = Ai,j · xi,j + bi,j · uj

yi = cT
i,j · xi,j

(5.2)

where, i = 1, 2, 13, 14, 23, 24 and j = 1, 2, 3 in this case for mirror segment 1.

The output of edge sensor can be expressed as the following:

yi = gi,1u1 + gi,2u2 + gi,3u3 (5.3)

51



10
0

10
1

10
2

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
, d

B

Blue:  estimated transfer function

Green: experimental data

10
0

10
1

10
2

−400

−300

−200

−100

0

P
ha

se
, d

eg

Frequency, rad/sec

Figure 5.5: Final fitting with G1(s)G2(s)G3(s)

The state space realization of the above equation can be expressed as the following:




ẋi,1

ẋi,2

ẋi,3


 =




Ai,1 0 0

0 Ai,2 0

0 0 Ai,3







xi,1

xi,2

xi,3


 +




bi,1 0 0

0 bi,2 0

0 0 bi,3







u1

u2

u3




yi = [ cT
i,1 cT

i,2 cT
i,3 ]




xi,1

xi,2

xi,3




(5.4)

or,

ẋi,j = Ai · xi + Bi · u
yi = cT

i · xi

(5.5)
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where,

xi ,




xi,1

xi,2

xi,3




u ,




u1

u2

u3




Ai ,




Ai,1 0 0

0 Ai,2 0

0 0 Ai,3




Bi ,




bi,1 0 0

0 bi,2 0

0 0 bi,3




cT
i , [ cT

i,1 cT
i,2 cT

i,3 ]

(5.6)

Overall, the state space realization of subsystem 1 (mirror segment 1) can be represented

as follows




ẋ1

ẋ2

ẋ13

ẋ14

ẋ23

ẋ24




=




A1 0 0 0 0 0

0 A2 0 0 0 0

0 0 A13 0 0 0

0 0 0 A14 0 0

0 0 0 0 A23 0

0 0 0 0 0 A24







x1

x2

x13

x14

x23

x24




+




B1 0 0 0 0 0

0 B2 0 0 0 0

0 0 B13 0 0 0

0 0 0 B14 0 0

0 0 0 0 B23 0

0 0 0 0 0 B24




u




y1

y2

y13

y14

y23

y24




=




cT
1 0 0 0 0 0

0 cT
2 0 0 0 0

0 0 cT
13 0 0 0

0 0 0 cT
14 0 0

0 0 0 0 cT
23 0

0 0 0 0 0 cT
24







x1

x2

x13

x14

x23

x24




(5.7)
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or,

Ẋ = A ·X + B · u
y = C ·X

(5.8)

where,

X ,




x1

x2

x13

x14

x23

x24




, y ,




y1

y2

y13

y14

y23

y24




A ,




A1 0 0 0 0 0

0 A2 0 0 0 0

0 0 A13 0 0 0

0 0 0 A14 0 0

0 0 0 0 A23 0

0 0 0 0 0 A24




B ,




B1 0 0 0 0 0

0 B2 0 0 0 0

0 0 B13 0 0 0

0 0 0 B14 0 0

0 0 0 0 B23 0

0 0 0 0 0 B24




C ,




cT
1 0 0 0 0 0

0 cT
2 0 0 0 0

0 0 cT
13 0 0 0

0 0 0 cT
14 0 0

0 0 0 0 cT
23 0

0 0 0 0 0 cT
24




(5.9)

The above state space realization is balanced in which the controllability and observabil-

ity Gramians are equal and diagonal. Therefore, each state is just as controllable as it is

observable which is essential to the model reduction which works by removing states hav-

ing little effect on the system’s input-output behavior. After the balanced-truncation model

reduction, a 48-state space was obtained. By repeating the above procedure for the rest

of the mirror segments, we are able to get a decentralized dynamic model of the structure

which neglects the interactions between different mirror segments. The singular values of the
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estimated model and the experimental data are plotted in Fig 5.6 – Fig 5.11.
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Figure 5.6: Singular value Comparisons for panel 1

A new SISO system identification using frequency domain data is presented in this paper.

The method of constructing a MIMO state-space model from SISO transfer function is also

discussed here. This method is applied to the modelling of a segmented telescope test bed

structure for the application of decentralized control. The transfer function estimation and

the modelling error are also presented. The identified model is validated in the later control

system design.

55



10
1

10
2

−30

−20

−10

0

10

20

30

40

Frequency, rad/sec

M
ag

ni
tu

de
, d

B

Solid line−−estimated model

Dashed line−−experimental data

Figure 5.7: Singular value Comparisons for panel 2
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Figure 5.8: Singular value Comparisons for panel 3
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Chapter 6

Implementation of Decentralized

and Overlapping Decentralized

Control Laws For the Segmented

Telescope Test Bed

In Chapter 3, different approaches have been investigated for the control design of a large

segmented telescope test-bed model and validated through digital simulation. In this Chap-

ter, we apply the two decentralized control approaches to a real telescope structure developed

at the Structure Pointing And Control Engineering (SPACE) Laboratory of California State

University, Los Angeles. Both the decentralized and the overlapping control algorithms are

implemented in real-time in a commercial DSP board. The experimental results proved that

the overlapping approach has a better performance than the decentralized approach. Fur-

ther, by combining the decentralized control with a simple adaptive scheme, the closed-loop

performance is greatly improved.

6.1 Control Scheme

6.1.1 Performance Requirements

The segment alignment control system is tasked to achieve the optical quality of a single

continuous mirror. Nominally, the segments must form a sphere as shown in Fig 3.3. In the

off nominal shape case, the center of each segment will deviate from the nominal tangent

point on the sphere. The error has to be within an accuracy of a fraction of the wavelength

of light. This optical specification is translated into the requirements for the shape errors to
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be within microns at steady state. The shape error is defined as follows:

ei =

√
y2

i,1 + y2
i,2 + y2

i,3

3
, i = 1, · · · , 6 (6.1)

where, ei is the RMS distortion of mirror segment i; yi,1, yi,2 and yi,3 are the three virtual

sensor outputs of mirror segment i.

The disturbances are typically quasi-static such as gravity loads, thermally induced loads,

actuators bias errors and drifts, steady state of outside disturbances. In this work, the

disturbance rejection is the main issue of the performance requirements. Therefore, the

control system bandwidth is not our primary concern here.

6.1.2 Robust Decentralized and Overlapping Controller Design

The controller design is based on the mixed-sensitivity H∞ approach of robust control [41].

Assuming ri and yi are the reference input and output of the ith mirror segment with the

appropriate dimension, and Ki(s) is the H∞ robust controller for the ith mirror segment

in the decentralized control. For the overlapping decentralized control, ri and yi are the

reference input and output of the ith overlapping subsystem (every two adjacent mirror

segments) with the appropriate dimension, Ki(s) is the H∞ robust controller for the ith

overlapping subsystem accordingly. The details about the controller synthesis are discussed

in [33]. As an example, the frequency response of decentralized control design is shown in

Fig 6.1- 6.6. The frequency response of overlapping decentralized control design is shown in

Fig 6.7- 6.12.
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Figure 6.1: Design for segment 1
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Figure 6.10: Design for segment 4 and 5
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Figure 6.11: Design for segment 5 and 6
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6.2 Real-time Implementation

The control laws are implemented in the SPACE lab with a TI TMS320C40 floating-point

DSP.

There are four processors in the DSP. This makes the decentralized control feasible be-

cause of the capability of parallel processing with the current hardware architecture. The six

controllers were implemented in parallel with a sampling frequency of 320Hz. To introducing

the disturbance to the system, a weight is placed on top of each of the six peripheral segment

mirrors. The measurements are very noisy since they are corrupted by measurement noise

while the structure is still. This can be better understood with Fig 3.4

In Fig 3.4 y, ym, d and n are the actual virtual displacements, measured virtual displace-

ments, disturbance, and measurement noise respectively. From the block diagram, we have

the following expressions:

y = S(s)d− T (s)n (6.2)

ym = y + n = S(s)d + [1− T (s)]n = S(s)d + S(s)n (6.3)

where, the sensitivity function S(s) and complementary sensitivity function T (s) are defined

as follows:

S(s) , [1−K(s)G(s)]−1 (6.4)

T (s) , K(s)G(s)[1−K(s)G(s)]−1 (6.5)

Since the disturbances are typically quasi-static such as gravity loads, thermally induced

loads, actuators bias errors and drifts, steady state of outside disturbances. They will be

attenuated if S(s) is small at low frequencies. The noise is high frequency signal, it will

be attenuated if T (s) is a low pass filter. Therefore we could make the shape error y ≈ 0

if T (s) and S(s) are appropriately designed. However, the measurement is corrupted with

noise. Even if the shape errors have been greatly attenuated, the measurements will remain

as ym ≈ S(s)n ≈ n . By comparing the standard deviations of the noise in open loop and

closed-loop, we found they are almost identical. Therefore we can conclude the quasi-static

disturbances are attenuated successfully through the closed-loop decentralized control even

though the measurements are noisy. By removing the noise from the primitive measurements

with a low-pass filter, we get the shape error of each mirror segment defined in (6.1) as in

Fig 6.13. The closed-loop results are shown on Table 6.1.

For the overlapping decentralized control, the results are shown in the Fig 6.14. The

closed-loop results are shown on Table 6.2. Compared to the decentralized control, this

overlapping approach has significantly improved the performance.
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Figure 6.13: Closed-loop real-time results with decentralized control
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Figure 6.14: Closed-loop real-time results with overlapping decentralized control
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Segment Initial error, micron RMS error, micron
1 114 1
2 162 4
3 230 38
4 93 21
5 182 7
6 164 10

Table 6.1: Segment shape errors under decentralized control

Segment Initial error, micron RMS error, micron
1 158 3
2 204 6
3 244 2
4 125 3
5 183 3
6 180 4

Table 6.2: Segment shape errors under overlapping decentralized control

6.3 Improving the performance with adaptive control

As the structures and their environmental and operational conditions vary within a large

range, the adaptive control seems very attractive for the control of large flexible space struc-

tures (LFSS). However, most adaptive control methods need some prior knowledge as an

upper bound on the order of the plant and also the exact pole-zero excess to guarantee sta-

bility of the closed-loop systems, and for the implementation of identifiers or observer-based

controllers of the same order as the controlled plant. Since the order of LFSS is very large

and unknown, in general, the usual adaptive control techniques cannot be applied unless

some prior care is taken to reduce the dimension of the controller. Here we apply a simple

adaptive control on top of the decentralized or overlapping decentralized control. This con-

trol scheme is proposed in [21] that can stabilize and regulate the output to zero of any plant

with arbitrary and unknown order and unknown parameters. The only assumption we made

is the existence of a constant output feedback matrix K∗ such that the closed-loop transfer

function matrix T (s) is SPR.

6.3.1 Stability of the adaptive control system

Consider the system T (s) shown in Fig 6.15. In this figure, K is the output feedback gain

matrix and G(s) is the transfer function of the plant. It has the following state space
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description

ẋ = Ax + Bu

y = Cx (6.6)

where A ∈ Rn×n, B ∈ Rn×q, C ∈ Rq×n, and x ∈ Rn, u ∈ Rq, y ∈ Rr.

 

G(s)
 

K
 

r
 

y
 

Figure 6.15: Block diagram of the closed-loop system

The closed-loop system of Fig 6.15 can be expressed as

ẋ = Akx + Br

y = Cx (6.7)

where Ak = A−BKC. The following lemma refers to our main assumption.

Lemma 6.1 (SPR Lemma [31], [1], [2], [26] ) The closed-loop transfer function ma-

trix T (s) = C(sI − Ak)
−1B is SPR if and only if there exists a matrix P = P T > 0 such

that

PAk + AT
k P < 0 (6.8)

PB = CT (6.9)

We can rewrite (6.7) as

ẋ = (A−BK∗C)x−B(K −K∗)y

y = Cx (6.10)

or

ẋ = A∗x−BK̃y, y = Cx (6.11)

where A∗ = A−BK∗C, K̃ = K −K∗, and K(t) is the estimate of K∗ at time t.
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Consider the quadratic function

V =
xT Px

2
+ trace(

K̃T Γ−1K̃

2
) (6.12)

where P satisfies the SPR Lemma and Γ is an arbitrary positive definite matrix. The time

derivative of V along the trajectory of (6.11) is given by

V̇ =
ẋT Px + xT Pẋ

2
+ trace(K̃T Γ−1 ˙̃K)

=
xT (PA∗ + A∗T P )x

2
− yT K̃T BT Px + xT PBK̃y

2
+ trace(K̃T Γ−1 ˙̃K)

According to (6.9), (6.12) can be rewritten as

V̇ =
xT (PA∗ + A∗T P )x

2
− yT K̃T Cx + xT CT K̃

2
+ trace(K̃T Γ−1 ˙̃K)

=
xT (PA∗ + A∗T P )x

2
− yT K̃T y + trace(K̃T Γ−1 ˙̃K)

=
xT (PA∗ + A∗T P )x

2
+ trace(K̃T Γ−1 ˙̃K − K̃T yyT ) (6.13)

If we choose

˙̃K = ΓyyT (6.14)

we have

V̇ =
xT (PA∗ + A∗T P )x

2
(6.15)

Since V is a quadratic function and V̇ ≤ 0, we conclude that V is a Lyapunov function

for the system (6.11), (6.14).

Since V is a nonincreasing function of time, the limt→∞V (t) exists. Therefore, we obtain

x, K̃ ∈ L∞ and x ∈ L2. Since ˙̃K = ΓyyT and y = Cx where x ∈ L∞, we have K̇ ∈ L∞.

Since ẋ ∈ L∞ due to K̃, x, y ∈ L∞, we conclude from ẋ ∈ L∞ and x ∈ L2 [25] that x(t) → 0

as t →∞.

Hence, u = −K(t)y with ˙̃K = ΓyyT can stabilize any system of any order and drive y,

x to zero as long as the assumption of the existence of K∗ that makes the closed-loop plant

transfer function matrix SPR is satisfied.
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6.3.2 Decentralized adaptive control

To accommodate the existing decentralized and overlapping decentralized control scheme,

here we apply the decentralized or overlapping decentralized adaptive control on top of the

closed-loop. Therefore the plant has been augmented by the decentralized or overlapping

control loop as shown on Fig 6.16.

 

G(s)
 

K
 

r
 

y
 

C(s)
 

Augmented plant, T(s)
 

Figure 6.16: Block diagram of decentralized control system with adaptive control

With the decentralized control, the transfer function of the structure can be expressed as

G(s) = (I + ∆)G̃

∆ = (G− G̃)G̃−1 (6.16)

where G̃ contains the block diagonal elements of G, as

G̃(s)
4
=




g11(s) 0 · · · 0

0 g22(s) · · · 0
...

...
...

...

0 0 · · · gν,ν(s)




. (6.17)

We have

I + GC = I + (I + ∆)G̃C = (I + G̃C) + ∆G̃C

= [I + ∆G̃C(I + G̃C)−1](I + G̃C)

= (I + ∆T̃ )(I + G̃C) (6.18)
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where,

T̃
4
= G̃C(I + G̃C)−1,

S̃
4
= I − T̃ = (I + G̃C)−1 (6.19)

Using (6.17), we have

T = GC(I + GC)−1

= GC[(I + ∆T̃ )(I + G̃C)]−1

= (I + ∆)G̃C(I + G̃C)−1(I + ∆T̃ )−1

= (I + ∆)(I + T̃∆)−1T̃ (6.20)

Let

I + ∆̃ = (I + ∆)(I + T̃∆)−1

where

∆̃
4
= (I + ∆)(I + T̃∆)−1 − I

= (I + ∆− I − T̃∆)(I + T̃∆)−1

= ∆S̃(I + T̃∆)−1 (6.21)

Therefore, the closed-loop transfer function under decentralized or overlapping decentralized

control is

T = (I + ∆̃)T̃ (6.22)

where,

˜T (s) =




T̃1(s) 0 · · · 0

0 T̃2(s) · · · 0
...

...
...

...

0 0 · · · T̃ν(s)




. (6.23)

Our assumption is the existence of the constant output feedback matrix K∗
i , i = 1, · · · , µ

such that the closed-loop transfer function matrix T̃iK
∗
i [(I + T̃iK

∗
i )]−1 is SPR. Here the

uncertainty term is directly related with the off-diagonal elements (interconnections between

segments) and the decentralized controllers Ci(s). In order to make the adaptive control

work in the presence of the uncertainty ∆̃, the gain matrices of the adaptation law (6.14)

has to be carefully chosen. Otherwise, the fast adaption will destabilize the overall system.
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Segment Initial error, micron RMS error, micron
1 240 0
2 278 2
3 256 9
4 120 4
5 270 1
6 314 3

Table 6.3: Segment shape errors under decentralized and adaptive control

Segment Initial error, micron RMS error, micron
1 168 4
2 205 6
3 279 1
4 102 2
5 209 2
6 202 4

Table 6.4: Segment shape errors under overlapping decentralized and adaptive control

By implementing the above mentioned adaptive scheme as in Fig 6.16, we get the shape

error of each mirror segment as in Fig 6.17. The closed-loop results are shown on the following

table.

As we can see from Fig 6.17, the errors are not completely settled down. Given long

enough time, the errors will be decreasing more.

For the overlapping decentralized control, the results are shown in the Fig 6.18. The

closed-loop results are shown on the following table. Since the overlapping control already

achieved good performance, the effect of adaptive control is not as evident as that in the

decentralized case.

Decentralized control and overlapping decentralized control laws are developed for the shape

control of a large segmented telescope test bed using robust control techniques. The resulted

complex control algorithms are easily implemented in parallel with multiple microprocessors.

The decentralized control algorithm is relatively simple but cannot meet the performance re-

quirements because the strong dynamic interactions between adjacent segments are ignored.

The overlapping decentralized control is a bit complicated but proved to be more effective in

meeting the performance requirements by taking into account the dynamic interactions. The

performance improvement is demonstrated through the real time experimental results.
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Figure 6.17: Closed-loop real-time results with decentralized and adaptive control
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Figure 6.18: Closed-loop real-time results with overlapping decentralized and adaptive con-
trol
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Chapter 7

Simplified Decentralized Control

Design

The control of large segmented telescopes is a challenging one due to the complexity and

high order of the system. The high order dynamics lead to high order controllers that

require more memory and faster computations for implementation. While this may not pose

a serious problem for a small number of segments, as the number of segments increases the

computational requirements are becoming enormous.

In this chapter, we use the test-bed developed at California State University in Los An-

geles that simulates in real-time a large segmented telescope to test the performance and

computational requirements of several control designs. Three decentralized control designs

were selected for implementation. These include a decentralized state feedback proportional

plus integral (DSFPI) controller, a decentralized output feedback proportional plus inte-

gral (DOPFI) controller, and a decentralized direct adaptive output feedback (DDAOF )

controller.

The DSFPI controller requires more memory space and computational power than the

DOFPI and DDAOF controllers. The DOFPI requires less memory space and computa-

tional operations but it fails to meet the performance requirements. The DDAOF requires

an acceptable amount of memory space and computational operations and has better per-

formance than the other two controllers.

7.1 Introduction

The model order of the primary mirror system is very large, which means that the compu-

tational complexity associated with the implementation of a centralized controller is very

high. For example, using an H∞ or LQR control design technique the order of the result-

ing controller is equal or larger than the order of the primary mirror model. For real-time

implementation of these high order controllers, a single processor with high computational
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power is required. These processors are either expansive or not available for a particular

implementation. One way to overcome this problem is to divide the primary mirror system

into a number of subsystems and then design a less complex controller (local controller) for

each subsystem. These local controllers can be simultaneously implemented using a number

of less expansive processors working in parallel. In this work, three types of decentralized

controllers are designed and implemented to the primary mirror system. Each local con-

troller is responsible for the control of a single active panel, adding up to a total of 6-local

controllers. Our objective is to design and implement different simple decentralized control

schemes, compare their performance and computational effort, and come up with candidate

controllers that meet the performance requirements with the least computational effort.

7.2 Decentralized Control Design

7.2.1 Decentralized State Feedback Proportional Plus

Integral (DSFPI) Control

For the design of the DSFPI control we express the primary mirror model as:




y1

y2

y3

y4

y5

y6




=




G11(s) 0 0 0 0 0

0 G22(s) 0 0 0 0

0 0 G33(s) 0 0 0

0 0 0 G44(s) 0 0

0 0 0 0 G55(s) 0

0 0 0 0 0 G66(s)







u1

u2

u3

u4

u5

u6




+




0 G12(s) G13(s) G14(s) G15(s) G16(s)

G21(s) 0 G23(s) G24(s) G25(s) G26(s)

G31(s) G32(s) 0 G34(s) G35(s) G36(s)

G41(s) G42(s) G43(s) 0 G45(s) G46(s)

G51(s) G52(s) G53(s) G54(s) 0 G56(s)

G61(s) G62(s) G63(s) G64(s) G65(s) 0







u1

u2

u3

u4

u5

u6




(7.1)

where the diagonal elements in the first matrix represent the dynamics of the 6-active

panels when they are isolated from the other panels. The second matrix represents the inter-

actions of the panels with each other. For the purpose of decentralized control design, theses

interactions are ignored. The state space representations of the 6-decoupled subsystems are
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given by:

ẋi =
_

Aixi +
_

Biui (7.2)

yi =
_

Cixi i = 1, 2, ....., 6 (7.3)

where xi ∈ R40 is the i-th local state vector, yi ∈ R3 is the i-th local output vector, and

ui ∈ R3 is the i-th local input vector. The
_

Ai,
_

Bi and
_

Ci are known matrices of appropriate

dimensions satisfying Gii(s) =
_

Ci(sI −
_

Ai)
−1

_

Bi. The decoupled models (7.2 and 7.3) are

used to design the 6-local state feedback proportional plus integral controllers as:

local state estimator : ˙̂xi(t) =
_

Aix̂i(t) +
_

Biui(t) + Fi(yi −
_

Cix̂i) (7.4)

local controller : ui(t) = −kix̂i(t)− li

t∫

0

yi(t) dt i = 1, 2, ......., 6 (7.5)

where x̂i ∈ R40 is the estimate of the i-th local state vector xi. The gain matrices

Fi ∈ R40×3, ki ∈ R3×40
, and li ∈ R3×3 are obtained following the standard LQR plus integral

design procedure [47]. The controller gains are varied using different weights in the LQR

cost until a desired closed-loop response is obtained.

7.2.2 Decentralized Output Feedback Proportional Plus Integral

(DOFPI) Control

The state space realization of the designed DSFPI control has a large order for each local

controller. For this reason, we seek another decentralized control design that has a small

order. The obvious way is to consider a DOFPI control instead of using a state feedback.

In this case, the order of each local controller is reduced to the number of local outputs. In

this work, the DOFPI control is designed following different approach than the one used

to design the DSFPI control. In fact, the local controllers are designed using the overall

model of the primary mirror system. The 6-local output feedback proportional plus integral

controllers are generated by:

ui(t) = −_

kiyi(t)−
_

l i

t∫

0

yi(t) dt i = 1, 2, ......., 6 (7.6)

where the gain matrices
_

ki ∈ R3×3
, and

_

l i ∈ R3×3 are obtained using a Lyapunov inequal-

ity equation and the overall system model. The details of computing the controller gains are

presented below.
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Consider the state space representation of a system given by:

ẋ = Ax + Bu (7.7)

y = Cx (7.8)

where x ∈ Rn is the system state vector, u =
[

uT
1 uT

2 . . . uT
m

]
T ∈ Rq is the input

vector, and y =
[

yT
1 yT

2 . . . yT
m

]
T ∈ Rq is the output vector. The matrices A,B, and C

are of appropriate dimensions. We differentiate the state equation (7.7) with respect to time

t and express it as:

v̇ = Avv + Bvu̇ (7.9)

y = Cvv (7.10)

where

v = [ẋT yT ]T , Av =

[
A 0

C 0

]
, Bv =

[
B

0

]
, and Cv =

[
0 I

]

We propose the following structure for the local controllers:

ui(t) = −_

kiyi(t)−
_

l i

t∫

0

yi(t) dt i = 1, 2, ......., m (7.11)

where the gain matrices
_

ki, and
_

l i are to be selected. The local controllers (7.11) can be

written in a compact form as u̇ = −F v where F has the following structure:

F =




_

k1C1

_

l 1 0 · · · 0
_

k2C2 0
_

l 2 · · · 0
...

...
...

. . . 0
_

kmCm 0 0 · · · _

l m




(7.12)

where C = [CT
1 , CT

2 , ......., CT
m]T . The following Lyapunov inequality equation is used to

compute the constant gain matrix F that stabilizes the closed-loop system.

P (Av −BvF ) + (Av −BvF )T P < 0 (7.13)

The problem is to find a positive definite matrix P and the controller gain F satisfying

(7.13). This problem is not easy to solve because the Lyapunov inequality equation (7.13) is

not linear in terms of P and F . However, if we fix P > 0 then the Lyapunov inequality is
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converted to a linear matrix inequality (LMI ), which can be easily solved for F .

The design procedure for the DOFPI is summarized in the following steps:

1. Add and subtract each of PAe to the first part and AT
e P to the second part of the

inequality (7.13) to get P (Av + Ae −Ae −BvF ) + (Av + Ae −Ae −BvF )T P < 0 The

matrix Ae is selected such that all eigenvalues of Av + Ae have a negative real part.

This modification is required for the next step because Av has a number of eigenvalues

at zero. For example one can select Ae =

[
0 0

0 ε I

]
, where ε is a negative scalar

2. Find the positive definite matrix P satisfying: P (Av +Ae)+(Av +Ae)
T P = −Q, where

Q is any positive definite matrix. For example select Q = I

3. Solve P (−Ae −BvF ) + (−Ae −BvF )T P < Q for F using the LMI-toolbox [49].

7.2.3 Decentralized Direct Adaptive Output Feedback(DDAOF )

Control

The structure of the proposed DDAOF control is shown in Fig 7.1.

uu~
yr =0 G (s) 18

Actuators
Primary
mirror

18
Sensorsf

G(s)

DDAOF control
laws

+-

Figure 7.1: Centralized control system

In this figure, the decentralized input filter has the following structure:

Gf (s) = diag {Gf1(s), Gf2(s), ..., Gf6(s)} (7.14)

where Gfi
(s) ∈ C3×3 is the i-th local filter. The DDAOF control laws are generated as

follows:
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ui = Gfi
(s) ũi (7.15)

ũi(t) = − ki(t) + li(t)

1 + δ (ki(t) + li(t))
yi(t) (7.16)

ki(t) = αiy
T
i (t)yi(t) (7.17)

l̇i(t) = βiy
T
i (t)yi(t) (7.18)

where i =1, 2,. . . , 6, and ki ∈ R, li ∈ R, and δ, αi, βi are design positive constants. The filter

Gf (s) and scalar δ are designed such that G(s)Gf (s)+δI is strictly positive real, this idea

is generalized from [46]. The passivity is required to ensure the stability of the closed-loop

system. The design details and stability analysis of the proposed DDAOF control scheme

are presented below.

Consider the proposed DDAOF controller shown in Fig 7.2.

uu~ yr =0 G (s)
f G(s)

DDAOF control
laws

+-

Figure 7.2: The proposed DDAOF controller

The state space realization of the filter Gf (s) is given by:

˙̃x = Ã x̃ + B̃ ũ (7.19)

u = C̃ x̃ + D̃ ũ (7.20)

where

x̃ =
[

x̃T
1 . . . x̃T

i . . . x̃T
m

]
T ∈ Rñ

ũ =
[

ũT
1 . . . ũT

i . . . ũT
m

]
T ∈ Rq

Ã = diag
{

Ã1 . . . Ãi . . . Ãm

}

B̃ = diag
{

B̃1 . . . B̃i . . . B̃m

}

C̃ = diag
{

C̃1 . . . C̃i . . . C̃m

}

D̃ = diag
{

D̃1 . . . D̃i . . . D̃m

}
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Ãj, B̃j, C̃j, D̃j are constant matrices of appropriate dimensions and Gf (s) = C̃(sI−Ã)−1B̃+

D̃.

Let Gm(s) = G(s)Gf (s)+δ I where δ is a scalar. The state space representation of Gm(s)

is given by:

˙̂x = Â x̂ + B̂ ũ (7.21)

ỹ = Ĉ x̂ + δ ũ = y + δ ũ (7.22)

where

x̂ =
[

xT x̃T
]T

∈ Rn+ñ, Â =

[
A BC̃

0 Ã

]
, B̂ =

[
BD̃

B̃

]
, and Ĉ =

[
C 0

]

and A, B, C are from the state space realization of G(s) = C(sI − A)−1B.

Theorem 7.1 If there exist a scalar δ and filter Gf (s) such that Gm(s) = G(s)Gf (s) + δ I

is SPR, then the following DDAOF control laws:

ui = Gfi
(s) ũi i = 1, 2, . . . , m (7.23)

ũi(t) = − ki(t) + li(t)

1 + δ (ki(t) + li(t))
yi(t) (7.24)

ki(t) = αiy
T
i (t)yi(t) (7.25)

l̇i(t) = βiy
T
i (t)yi(t) (7.26)

where αi and βi are design positive constants, can stabilize the system of Fig. 7.2 and force

the output vector y to zero exponentially fast.

The following Lemma is used to prove Theorem 10.1.

Lemma 7.1 (Kalman-Yakubovich-Popov Lemma [51]) The transfer function matrix

Gm(s) = Ĉ(sI− Â)−1B̂ + δ I is SPR if and only if there exist matrices P = P T > 0, L, and

W , and a constant ε > 0 such that:

PÂ + ÂT P = −LT L− εP (7.27)

PB̂ = ĈT − LT W (7.28)

W T W = 2δ I (7.29)
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Proof of Theorem 10.1: Use

V (x̂) =
1

2
x̂T P x̂ (7.30)

as a Lyapunov function candidate. The derivative of (7.30) along the trajectories of the

system (7.21) is given by

V̇ (x̂) =
1

2
x̂T P ˙̂x +

1

2
˙̂xT P x̂ (7.31)

Substituting (7.21) into (7.31), we obtain

V̇ (x̂) =
1

2
x̂T (PÂ + ÂT P ) x̂ + x̂T PB̂ ũ (7.32)

Using (7.27) and (7.28) from Lemma 10.1, yields

V̇ (x̂) = −1
2
x̂T LT L x̂− 1

2
ε x̂T P x̂ + x̂T (ĈT − LT W )ũ

= −1
2
x̂T LT L x̂− 1

2
ε x̂T P x̂ + x̂T (ĈT − LT W )ũ + δ ũT ũ− δ ũT ũ

= −1
2
x̂T LT L x̂− 1

2
ε x̂T P x̂ + (Ĉ x̂ + δ ũ)T ũ− δ ũT ũ− x̂T LT W ũ

(7.33)

Using (7.29) from Lemma 10.1 and (7.22), we obtain

V̇ (x̂) = −1

2
ε x̂T P x̂− 1

2
(L x̂ + W ũ)T (L x̂ + W ũ) + ỹT ũ (7.34)

Substituting ỹT ũ = ỹT
1 ũ1 + . . . + ỹT

j ũj + . . . + ỹT
mũm =

m∑
i=1

ỹT
i ũi into (7.34), we have

V̇ (x̂) = −1

2
ε x̂T P x̂− 1

2
(L x̂ + W ũ)T (L x̂ + W ũ) +

m∑
i=1

ỹT
i ũi (7.35)

Using the local controllers of Theorem 10.1, we have

(1 + δ (ki(t) + li(t))) ũi(t) = −(ki(t) + li(t)) yi(t)

or

ũi(t) = −(ki(t) + li(t)) (yi(t) + δ ũi(t))

= −(ki(t) + li(t)) ỹi(t)

(7.36)

Substituting (7.36) into (7.35), we have

V̇ (x̂) = −1

2
ε x̂T P x̂− 1

2
(L x̂ + W ũ)T (L x̂ + W ũ)−

m∑
i=1

(ki + li)ỹ
T
i ỹi (7.37)
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Since (ki + li)ỹ
T
i ỹi ≥ 0, we have

V̇ (x̂) ≤ −1

2
ε x̂T P x̂ (7.38)

which implies that ‖x̂(t)‖ is bounded and converges to zero exponentially fast. Since x̂ =

[xT x̃T ]T we also have ‖x(t)‖ , ‖x̃(t)‖ going to zero exponentially fast. Since y = Cx we have

that ‖y(t)‖ going to zero exponentially fast. The above analysis also implies that x, x̃ and y

are square integrable i.e. they are L2-signals. From (7.26) we have li(t) = βi

t∫
0

yT
i (τ)yi(τ) dτ ,

since yi ∈ L2 it follows that li(t) is bounded and lim t→∞li(t) = βi

∞∫
0

yT
i (τ)yi(τ) dτ = l̄i < ∞.

Hence all signals are bounded in addition to ‖yi(t)‖ converging to zero exponentially fast.

Remark 1: The following lemma shows that there always exists a scalar δ such that

Gm(s) is SPR.

Lemma 7.2 For any n × n proper transfer function matrix G̃m(s) = Ĉ(sI − Â)−1B̂ with

all elements analytic in the closed right-half complex plane, there exists a scalar δ such that

Gm(s) = G̃m(s) + δ I is SPR.

The following Definition is used for the proof of Lemma 10.2.

Definition 7.1 [48]: Let Gm(s) be an n×n transfer function matrix and also let Gh(jw) =

Gm(jw) + GT
m(−jw). Then Gm(s) is SPR if:

1. Gm(s) is analytic in the closed right-half complex plane

2. Gh(jw) > 0 ∀w ∈ (−∞,∞)

3. Gh(∞) ≥ 0

4. limw→∞ w2Gh(jw) > 0 if Gh(∞)is singular.

Proof of Lemma 2: Since we assumed that all elements of Gm(s) are analytic in the

closed right-half complex plane, therefore condition 1 of definition 10.1 is satisfied.

Now Gm(s) is SPR if Gh(jw) is positive definite for any real w or the eigenvalues of Gh(jw)

are positive for any real w (including w = ∞). The characteristic equation of Gh(jw) at

each w is

∆(λw, w) := |λwI −Gh(jw)| =
∣∣∣λwI − (G̃m(jw) + G̃T

m(−jw) + 2δ I)
∣∣∣

=
∣∣∣(λw − 2δ )I − (G̃m(jw) + G̃T

m(−jw))
∣∣∣ = 0

(7.39)

where λw is the eigenvalue of Gh(jw) at each w. Let λmin be the minimum eigenvalue of

G̃m(jw) + G̃T
m(−jw) ∀w ∈ (−∞,∞), then for
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δ > −1

2
λmin (7.40)

we have λw > 0 . Therefore condition 2 of definition 10.1 is satisfied. For condition 3 of

definition 10.1 we have Gh(∞) = 2δ I ≥ 0 for δ ≥ 0 . Therefore condition 3 is satisfied.

Choosing δ > max{0,−1
2
λmin} we satisfied conditions 2 and 3 as well as condition 4.

Remark 2: The following Lemma can be used to find the constant matrices of the filter

and δ analytically.

Lemma 7.3 [50]: The transfer function matrix Gm(s) = Ĉ(sI − Â)−1B̂ + δ I is SPR if and

only if there exists a positive definite matrix H such that:

[
ÂH + HÂT B̂ −HĈT

B̂T − ĈH −2δ I

]
< 0 (7.41)

The matrix inequality (7.41) is not linear in terms of H and the filter matrices and

therefore it is not easy to solve. However, if we select some filter matrices we can convert it

to an LMI problem. For example, choose Ã = αI and C̃ = I where α is some negative value.

In this case the matrix inequality (7.41) can be easily solved for the other design matrices

and δ using the LMI toolbox [49].
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7.3 Experimental Results

The three controllers presented in the previous section are discretized first using a sampling

period of 1 ms and then implemented to the primary mirror system. The real-time results

for the three controllers are shown in Figures: 7.3, 7.4, and 7.5 for the 18-edge sensor

outputs, 18-control commands, and 6-shape errors. In order to examine the effectiveness of

the controllers, initial shape errors are created on the position of the primary mirror panels

by adding constant loads on the panels. For the DSFPI control, the number of states for

each subsystem is 40. The number of computational operations required to implement the

DSFPI control is large and cannot be handled by the available DSPs. For this reason,

we reduced the order of the 6-decoupled system models and designed new controllers with

17-states for each local controller. The 18-edge sensor outputs, 18-control commands, and

6-shape errors for the closed-loop system with reduced order DSFPI control are shown in

Fig 7.3.

 

Figure 7.3: Closed-loop real-time results with DSFPI control (right column shows the steady
state results)
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These plots indicate that the closed-loop system is stable, the effect of the disturbances

is reduced, and the control effort for all 18-actuators is within the limits (+/-1 V). For the

DOFPI controller, the number of computational operations is dramatically reduced when

compared with the DSFPI controller, since the number of controller states is now 3 for

each local controller. The closed-loop system performance however is worst than that of the

DSFPI controller as shown in Fig 7.4.

 
 

Figure 7.4: Closed-loop real-time results with DOFPI control (right column shows the steady
state results)

The implementation results for the proposed DDAOF controller are shown in Fig 7.5.

The DDAOF controller reduces the effect of the disturbance on the primary mirror panels

by 100:1 faster than the other two designs.
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Figure 7.5: Closed-loop real-time results with DDAOF control (right column shows the steady
state results)

The time it takes to compute any 18-control command samples by the 3-DSPs (the

sampling time is 1 ms) is:

• 0.78 ms for the DSFPI control

• 0.2 ms for the DOFPI control

• 0.29 ms for the DDAOF control.

These results indicate that the DOFPI and DDAOF controllers take much less computational

power of the 3-DSPs than the DSFPI controller. However, the DOFPI controller fails to

meet the performance requirements. Overall the DDAOF controller performs better and

required low computational effort. Table 7.1 shows the comparison between the three types

of controllers.
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Panel no.
Initial shape error values in µm. Shape error values in µm at 240 s
DSFPI
control

DOFPI
control

DDAOF
control

DSFPI
control

DOFPI
control

DDAOF
control

1 277.339 61.640 107.979 1.43 2.6 0.66
2 318.624 71.132 251.199 0.72 15.7 0.72
3 259.205 151.658 363.237 1.01 1.44 1.52
4 214.905 52.087 233.563 0.27 1.94 1.17
5 272.448 55.378 159.361 4.57 2.69 0.5
6 278.812 101.999 124.334 2.08 7.20 0.3

Table 7.1: The shape error values for the three types of controllers
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Chapter 8

Control Designs For The

Segmented Telescope Test Bed

With A Secondary Mirror

The control design and implementation for the segmented telescope test-bed in SPACE Lab

has been discussed in Chapter 6 and 7. However the control mechanism for the secondary

mirror was not available at that time. In this chapter, we use the finite element model

including the secondary mirror for the control design and simulation. In the decentralized

case, the secondary is treated as an additional segment just like one of the 6 segments of the

primary mirror. In the overlapping decentralized control case, the overlapped subsystem is

constituted by combining the secondary mirror with each of the 6 primary mirror segments.

8.1 Description of Finite Element Model

A 124-state linear model was obtained through finite element analysis. In this chapter, we

use this model for design, analysis, and simulations. The state-space representation of the

open-loop structure is

ẋ = Ax + Bu

y = Cx, (8.1)

where A ∈ R124×124, B ∈ R124×21, C ∈ R21×124. State vector x consists of modal amplitudes

and modal rates. y = [y1, y2, · · · , y21]
′ is the output vector; y1, · · · , y18 represents the 18

virtual displacements of the primary mirror in mm; and y19, y20, y21 are the outputs of the

3 position sensors of the secondary mirror in mm. The 21 linear electromagnetic actuators

working in the current mode are used to provide the required force command to keep the

segments in the desired shape. The input vector [u1, u2, · · · , u18]
′ represents the forces applied
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to the primary mirror; and u19, u20, u21 are the inputs to the 3 actuators on the secondary

mirror. The dynamics of these actuators are neglected so that the output force is represented

as ui = kaIi, i = 1, · · · , 18, where Ii is the input current to motor i in amp, ui is the output

force of motor i in Newton, and ka is the force constant. The Singular value Bode plot of

the finite element model is shown in Fig 8.1.
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Figure 8.1: SPACE Segmented telescope test-bed FEM

8.2 Decentralized Control Design

As we did in Chapter 3, we are interested in a decentralized control technique where each

sub-controller controls the three actuators of each segment and uses measurements from the

sensors of the corresponding segment. In addition, we will treat the secondary mirror as the

7th subsystem. We chose the following weights in the control design

W1(s) =
(s + 0.8944)2

(0.707s + 10)2

W2(s) =
400

s2

The frequency response of decentralized control design are shown in Fig 8.2- 8.8. The

overall frequency response of the closed-loop system is shown in Fig 8.9.
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Figure 8.2: Design for mirror segment 1
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Figure 8.3: Design for mirror segment 2
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Figure 8.4: Design for mirror segment 3
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Figure 8.5: Design for mirror segment 4
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Figure 8.6: Design for mirror segment 5
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Figure 8.7: Design for mirror segment 6
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Figure 8.8: Design for secondary mirror
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Figure 8.9: Design for secondary mirror
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Figure 8.10: Design for mirror segment 1 and secondary

8.3 Overlapping Decentralized Control Design

Since the secondary mirror is coupled with all the segments of the primary mirror dynamically

through the truss structure, here we propose the overlapping decentralized control design by

combining the secondary mirror with each of the 6 primary mirror segments as an overlapped

subsystem. We choose the same weights as in decentralized control

W1(s) =
(s + 0.8944)2

(0.707s + 10)2

W2(s) =
400

s2

The frequency response of overlapping decentralized control design is shown in Fig 8.10-

8.15. The overall frequency response of the closed-loop system is shown in Fig 8.16.
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Figure 8.11: Design for mirror segment 2 and secondary
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Figure 8.12: Design for mirror segment 3 and secondary
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Figure 8.13: Design for mirror segment 4 and secondary
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Figure 8.14: Design for mirror segment 5 and secondary
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Figure 8.15: Design for mirror segment 6 and secondary
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Figure 8.16: Design for secondary mirror
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8.4 Simulation Results

To demonstrate our results, the different control schemes are simulated using the finite ele-

ment model in the time domain. Disturbances are force/torques in nature. The disturbances

are typically quasi-static such as gravity loads, thermally induced loads, actuator bias errors

and drifts, steady-state of outside disturbance. The effects of these disturbances are position

errors which appear on the virtual measurements of the primary mirror and the position sen-

sor measurements of the secondary in the open-loop case. In the simulation, for the sake of

simplicity, disturbances with 100 micron magnitude are directly added to the measurements

of the 18 virtual measurements of the primary mirror and the 3 position sensor measurements

to emulate the effects of the real disturbances. Three different scenarios are simulated here.

First, a constant disturbance with magnitude 100 microns is applied to all 21 channels of

the telescope. Second, a sinusoidal disturbance with magnitude 100 microns and frequency

0.6rad/sec is applied to all 21 channels of the telescope. Finally, a sinusoidal noise with

magnitude 1 microns and frequency 1000rad/sec is added to all the sensor measurements of

the telescope. The time domain results are shown in Figs. 8.17-8.18.

In the decentralized control case, shown in Fig 8.17, the closed-loop output of each channel

to both constant and sinusoidal disturbances of 0.6rad/sec is less than 1 micron at steady

state, except the response of the secondary mirror position sensors. The sensor noise is also

attenuated at 1000rad/sec.

In the overlapping decentralized control case, shown in Fig 8.18, the closed-loop output of

each channel to both constant and sinusoidal disturbances of 0.6rad/sec is less than 1 micron

at steady state, which means the disturbance within the frequency range of 0 − 0.6rad/sec

has been reduced by 100:1. The closed-loop output of each channel to the sensor noise is less

than 0.01 micron. So the overlapping method can successfully reject the disturbances within

the frequency range of 0− 0.6rad/sec.
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Chapter 9

Overlapping Decentralized Control

of Nonlinear Systems

In the chapter 3, we have shown that the overlapping decentralized control can be successfully

applied to linear time invariant systems with overlapping interconnections. In this chapter,

we apply the overlapping decentralized control to certain type of nonlinear systems.

9.1 Overlapping Decentralized Control With Input, State,

And Output Inclusion

Before starting the analysis, let us review some of the results of the overlapping decentralized

control of linear systems [23].

9.1.1 Input-output inclusion

We consider a pair of linear systems, S

ẋ = Ax + Bu

y = Cx (9.1)

and S̃

˙̃x = Ãx̃ + B̃ũ

ỹ = C̃x̃ (9.2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are the state, input, output of the system S at time

t ∈ R+, and x̃(t) ∈ Rñ, ũ(t) ∈ Rm̃, ỹ(t) ∈ Rl̃ are the states of S̃. The matrices A, B, C and

Ã, B̃, C̃ are constant and of appropriate dimensions. The dimensions of the state, input,
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and output of S are smaller than (or at least equal to) those of S̃, respectively. The systems

S and S̃ are related by the transformations,

x̃ = V x, x = Ux̃,

ũ = Ru, u = Qũ, (9.3)

ỹ = Ty, y = Sỹ,

where V , R, and T are constant matrices with proper dimensions and full column ranks; U ,

Q, S are constant matrices with proper dimensions and full row ranks, which satisfies the

relations

UV = In, QR = Im, ST = Il. (9.4)

In (9.4), Im, In, and Il are identity matrices of indicated dimensions.

Definition 9.1 [23] We say that the system S̃ includes the system S, that is, S is included

by S̃, if there exists a quadruplet (U, V, R, S) such that, for any initial state x0 and any fixed

input u(t) of S, the choice

x̃0 = V x0

ũ(t) = Ru(t) ∀t ≥ 0 (9.5)

of the initial state x̃0 and the input ũ(t) of S̃, implies

x(t; x0, u) = Ux̃(t; x̃0, ũ)

y[x(y)] = Sỹ[x̃(t)] ∀t ≥ 0 (9.6)

The condition of this definition implies that the system S̃ contains all the necessary

information about the behavior of the system S. we can extract any property such as stability

and optimality of S from S̃, which is the underlining idea of the Inclusion Principle [24].

If the system S̃ includes system S, then S̃ is said to be an expansion of S, and S is called

a contraction of S̃.

Theorem 9.1 [23] The system S̃ includes the system S if and only if there exists a quadru-

plet (U, V, R, S) such that

Ai = UÃiV, AiB = UÃiB̃R, CAi = SC̃ÃiV,

CAiB = CC̃ÃiB̃R ∀i = 0, 1, 2, . . . (9.7)
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When we consider overlapping decompositions of S, we are interested in generating ex-

pansions S̃ of S. If the pairs of matrices (U, V ), (Q,R), and (S, T ) are specified, the matrices

Ã, B̃, and C̃ can be expressed as

Ã = V AU + M, B̃ = V BQ + N, C̃ = TCU + L, (9.8)

where M , N , and L are complementary matrices of appropriate dimensions. For S̃ to be

an expansion of S, aproper choice of M , N , and L is required, which is provided by the

following:

Theorem 9.2 [23] The system S̃ is an expansion of the system S, if and only if

UM iV = 0, UM i−1NR = 0

SLM i−1V = 0, SLM i−1NR = 0

∀i = 1, 2, . . . , ñ (9.9)

Definition 9.2 We say that the system S is a restriction of S̃, that is, S̃ is an unrestriction

of S, if there exists a triplet (V, R, T ), such that, for any initial state x0 and fixed input u(t)

of S, the choice

x̃0 = V x0

ũ = Ru(t), ∀t ≥ 0 (9.10)

of the initial state and input of S̃, implies

x̃(t; x̃0, ũ) = V x(t; x0, u)

ỹ[x̃(t)] = Ty[x(t)], ∀t ≥ 0 (9.11)

Theorem 9.3 The system S is a restriction of the system S̃, if and only if

MV = 0, NR = 0, LV = 0 (9.12)

9.1.2 Contractibility of controllers

We consider a LTI controller, C

ż = Fx + Gy

u = Hz + Ky + v (9.13)
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for system S, and a controller C̃

˙̃z = F̃ z̃ + G̃ỹ

ũ = H̃z̃ + K̃ỹ + ṽ (9.14)

for the expansion S̃ of S, where z(t) ∈ Rp and z̃(t) ∈ Rp̃ are the states of the controllers

C and C̃ at time t ∈ R+, and v(t) ∈ Rm and ṽ(t) ∈ Rm̃ are new inputs to the resulting

closed-loop systems. All matrices in (9.13) and (9.14) are constant and have appropriate

dimensions. The state spaces of C and C̃ are related by the transformations,

z̃ = Ez, z = Dz̃, (9.15)

where E is a constant matrix with proper dimensions and full column rank; D is a constant

matrix with proper dimension and full row rank, which satisfies the relation

DE = Ip. (9.16)

Definition 9.3 [23] We say that the controller C̃ for the expansion S̃ is contractible to the

controller C for the original system S, if there exists a pair (D,E) such that, for any initial

state x0 and any fixed input u(t) of S, any initial state z0 of C, the choice

x̃0 = V x0

ũ(t) = Ru(t), ∀t ≥ 0 (9.17)

of the initial state and input of C̃, and

z̃0 = Ez0 (9.18)

of the initial state C̃, implies

z(t; z0, y) = Dz̃(t; z̃0, ỹ)

R[Hz(t) + Ky(t)] = H̃z̃(t) + K̃ỹ(t) ∀t ≥ 0 (9.19)

The above definition implies that if C̃ is contractible to C, then the closed-loop system

(plant S and controller C) is a contraction of the expanded closed-loop system (expansion S̃
and controller C̃). Then the definition of inclusion implies:

Theorem 9.4 If the controller C̃ for the expansion S̃ is contractible to the controller C for

the original system S, the stability of the expanded closed-loop system implies the stability of

the stability of the original closed-loop system.
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Now we consider the state feedback control laws

u = Kx + v (9.20)

and

ũ = K̃x̃ + ṽ (9.21)

for the system S and the expansion S̃, respectively, we have the following:

Corollary 9.1 The control law ũ = K̃x̃+ṽ for S̃ is contractible to the control law u = Kx+v,

if and only if

K̃ÃiV = RKAi, K̃ÃiB̃iR = RKAiB, ∀i = 0, 1, 2, . . . (9.22)

Corollary 9.2 When S is a restriction of S̃, the control law ũ = K̃x̃+ ṽ for S̃ is contractible

to the control law u = Kx + v, if

K̃T = RK (9.23)

9.2 Overlapping Decentralized Control With State Feedback

Consider the system

ẋ = f(x, u) (9.24)

where f(0, 0) = 0 and f(x, u) is contionuously differentiable in a domain Dx × Du with

x(t) ∈ Rn, u(t) ∈ Rm that contains the origin (x = 0, u = 0). Furthermore, system (9.24) is

assumed to have the following structure of dynamics

ẋ1 = f1(x1) + g1(x1)u1 + h1(x)

ẋ2 = f2(x2) + g2(x2)u2 + h2(x) (9.25)

ẋ3 = f3(x3) + g3(x3)u3 + h3(x)

where fi, gi, hi, xi, ui, i = 1, 2, 3 have the appropriate dimensions. hi(x), i = 1, 2, 3 are the

interconnections. We want to design a state feedback control u = γ(x) to stabilize the

system. Linearization of (9.24) about (x = 0, u = 0) results in the linear system




ẋ1

ẋ2

ẋ3


 =




A11 A12 A13

A21 A22 A23

A31 A32 A33







x1

x2

x3


 +




B11 0 0

0 B22 0

0 0 B33







u1

u2

u3


 (9.26)
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where

A =
∂f(x, u)

∂x
|x=0,u=0; B =

∂f(x, u)

∂u
|x=0,u=0 (9.27)

Assume the pair (A,B) is controllable, or at least stabilizable.

We treat the system as composed of two overlapping subsystems

[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B11 0

0 B22

][
u1

u2

]
(9.28)

and

[
ẋ2

ẋ3

]
=

[
A22 A23

A32 A33

][
x2

x3

]
+

[
B22 0

0 B33

][
u2

u3

]
(9.29)

Consider the following state feedback laws,

[
u1

u2

]
=

[
k11

1 k12
1

k21
1 k22

1

][
x1

x2

]
(9.30)

[
u2

u3

]
=

[
k11

2 k12
2

k21
2 k22

2

][
x2

x3

]
(9.31)

Now we generate an expansion S̃ of S using the transformation matrices:

V =




In1 0 0

0 In2 0

0 In2 0

0 0 In3


 , U = (V T V )−1V T =




In1 0 0 0

0 In2/2 In2/2 0

0 0 0 In3


 (9.32)

R =




Im1 0 0

0 Im2 0

0 Im2 0

0 0 Im3


 , Q = (RT R)−1RT =




Im1 0 0 0

0 Im2/2 Im2/2 0

0 0 0 Im3


 (9.33)

So that S is a restriction of S̃.
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Applying the above theorem, we obtain the expansion S̃ as

[
˙̃x1

˙̃x2

]
=




A11 A12 0 A13

A21 A22 0 A23

A21 0 A22 A23

A31 0 A32 A33




[
x̃1

x̃2

]

+




B11 0 0 0

0 B22 0 0

0 0 B22 0

0 0 0 B33




[
ũ1

ũ2

]
(9.34)

where x̃1 = (xT
1 , xT

2 )T , x̃2 = (xT
2 , xT

3 )T , ũ1 = (uT
1 , uT

2 )T , ũ2 = (uT
2 , uT

3 )T . The complementary

matrices are

M =




0 A12/2 −A12/2 0

0 A22/2 −A22/2 0

0 −A22/2 A22/2 0

0 −A32/2 A32/2 0




N =




0 0 0 0

0 B22/2 −B22/2 0

0 −B22/2 B22/2 0

0 0 0 0


 (9.35)

L =




0 0 0 0

0 In2/2 −In2/2 0

0 −In2/2 In2/2 0

0 0 0 0




The decentralized state feedback is

[
ũ1

ũ2

]
=




k11
1 k12

1 0 0

k21
1 k22

1 0 0

0 0 k11
2 k12

2

0 0 k21
2 k22

2




[
x̃1

x̃2

]
(9.36)

The above control law is decentralized, but is not contractible for implementation in the
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original system S. For that reason, we have to modify (9.36) so that

[
ũ1

ũ2

]
=




k11
1 k12

1 0 0

k21
1 (k22

1 + k11
2)/2 0 k12

2

k21
1 0 (k22

1 + k11
2)/2 k12

2

0 0 k21
2 k22

2




[
x̃1

x̃2

]
(9.37)

This modification is motivated by the requirement that the m2-dim component u2 of ũ1 has

to be identical to the m2-dim component u2 of ũ2. The overall system with the state feedback

now can be described as

˙̃x = (Ã + B̃K̃)x̃

=




A11 + B11k11
1 A12 + B12k12

1 0 0

A21 + B21k21
1 A22 + B22k22

1 0 0

0 0 A22 + B22k11
2 A23 + B23k12

2

0 0 A32 + B32k21
2 A33 + B33k22

2


 x̃ +




0 0 0 A13

0 B22(k11
2−k22

1)
2

0 A23 + B22k12
2

A21 + B22k21
1 0 B22(k11

2−k22
1)

2
0

A31 0 0 0




x̃

(9.38)

Let’s rewrite the above equation in the following way:

[
˙̃x1

˙̃x2

]
=

[
Ã1 0

0 Ã2

][
x̃1

x̃2

]
+

[
M̃11 M̃12

M̃21 M̃22

][
x̃1

x̃2

]
(9.39)

where

Ã1 =

[
A11 + B11k11

1 A12 + B12k12
1

A21 + B21k21
1 A22 + B22k22

1

]

Ã2 =

[
A22 + B22k11

2 A23 + B23k12
2

A32 + B32k21
2 A33 + B33k22

2

]

M̃11 =

[
0 0

0 B22(k11
2−k22

1)
2

]
, M̃12 =

[
0 A13

0 A23 + B22k12
2

]

M̃21 =

[
A21 + B22k21

1 0

A31 0

]
, M̃22 =

[
B22(k11

2−k22
1)

2
0

0 0

]
(9.40)

Since system ˙̃xi = Ãix̃i, for i = 1, 2 is a stable system, there exists a positive definite
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decrecent Lyapunov function Vi(x̃i) which satisfies

V̇i(x̃i) =
∂Vi

∂x̃i

Ãix̃i ≤ −αiφ
2
i (x̃i) (9.41)

and suppose

∥∥∥∥
∂Vi

∂x̃i

∥∥∥∥ ≤ βiφi(x̃i) (9.42)

for x̃ ∈ Rñ for some positive constants αi and βi, where φi are positive definite and continu-

ous. Furthermore, suppose the interconnection terms satisfy the bound

∥∥∥M̃11x̃1 + M̃12x̃2

∥∥∥ ≤ γ11φ1(x̃1) + γ12φ2(x̃2)∥∥∥M̃21x̃1 + M̃22x̃2

∥∥∥ ≤ γ21φ1(x̃1) + γ22φ2(x̃2) (9.43)

for all x̃ ∈ Rñ and for some nonnegative constants γij, i = 1, 2; j = 1, 2.

Define matrix W as

wij = αi − βiγii, if i = j

wij = −βiγij, if i 6= j (9.44)

Then we have the following regarding the stability of the interconnected system.

Theorem 9.5 The expanded closed-loop system is stable if matrix W is a M-matrix.

Proof: Immediately following the Vector-Lyapunov method.

Here the key feature is that the interconnection terms contain the feedback gains. In case

of high gains, it may fail to prove the stability of the expanded system. When the stability

of the expanded system is established, the original closed-loop system stability is guaranteed

by theorem 3.1.4.

9.3 Overlapping Decentralization With Direct Nonlinear

Control

Consider the nonlinear system

ẋ = f(x, u) (9.45)

where f(0, 0) = 0 and f(x, u) is contionuously differentiable in a domain Dx × Du with

x(t) ∈ Rn, u(t) ∈ Rm that contains the origin (x = 0, u = 0). Furthermore, system (9.45) is
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assumed to have the following overlapping dynamics

ẋ1 = f1(x1) + g1(x1)u1 + h1,2(x1, x2) + h1(x)

ẋ2 = f2(x2) + g2(x2)u2 + h2,1(x1, x2) + h2,3(x2, x3) + h2(x) (9.46)

ẋ3 = f3(x3) + g3(x3)u3 + h3,2(x2, x3) + h3(x)

where h1,2(x1, x2), h1(x), h2,1(x1, x2), h2,3(x2, x3), h2(x), h3,2(x2, x3), h3(x) are the interconnec-

tions. We want to design the control ui, i = 1, 2, 3 to stabilize the system.

First we decompose the system in (9.46) into two overlapped subsystems, S1:

ẋ1 = f1(x1) + g1(x1)u1
1 + h1,2(x1, x2)

ẋ2 = f2(x2) + g2(x2)u2
1 + h2,1(x1, x2) (9.47)

and S2:

ẋ2 = f2(x2) + g2(x2)u2
2 + h2,3(x2, x3)

ẋ3 = f3(x3) + g3(x3)u3
2 + h3,2(x2, x3) (9.48)

Suppose the control laws u1
1 = u1

1(x1, x2), u2
1 = u2

1(x1, x2) for S1 and u2
2 = u2

2(x2, x3),

u3
2 = u3

2(x2, x3) for S2 are continuously differentiable in a domain Dx ⊂ Rn that contains

the origin (x1 = 0, x2 = 0, x3 = 0). Furthermore there exist positive definite decrecent

Lyapunov functions V1(x1, x2) and V2(x2, x3) which satisfy

V̇1(x1, x2) ≤ −α1φ
2
1(x1, x2)

V̇2(x2, x3) ≤ −α2φ
2
2(x2, x3) (9.49)

and suppose

∥∥∥∥∥
∂V1

∂x1
∂V1

∂x2

∥∥∥∥∥ ≤ β1φ1(x1, x2),

∥∥∥∥∥
∂V2

∂x2
∂V2

∂x3

∥∥∥∥∥ ≤ β2φ2(x2, x3) (9.50)

for x ∈ Rn for some positive constants αi and βi, where φi are positive definite and continu-

ous.

For the implementation, let us choose the following control law for the original system

(9.46)

u1 = u1
1(x1, x2)

u2 = u2
1(x1, x2) + u2

2(x2, x3) (9.51)

u3 = u3
2(x2, x3)
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and the function

V (x1, x2, x3) = d1V1(x1, x2) + d2V2(x2, x3) (9.52)

be a composite Lyapunov function for the overall system for all values of the positive constants

d1, d2. The derivative of V (x1, x2, x3) along the trajectories of (9.46) is given by

V̇ (x1, x2, x3) = d1{∂V1

∂x1

[f1(x1) + g1(x1)u1
1(x1, x2) + h1,2(x1, x2)]

+
∂V1

∂x2

[f2(x2) + g2(x2)u2
1(x1, x2) + h2,1(x1, x2)]

+
∂V1

∂x1

h1(x) +
∂V1

∂x2

[g2(x2)u2
2(x2, x3) + h2,3(x2, x3) + h2(x)]}

+d2{∂V2

∂x2

+ [f2(x2) + g2(x2)u2
2(x2, x3) + h2,3(x2, x3)]

+
∂V2

∂x3

[f3(x3) + g3(x3)u3
2(x2, x3) + h3,2(x2, x3)]

+
∂V2

∂x3

h3(x) +
∂V2

∂x2

[g2(x2)u2
1(x1, x2) + h2,1(x1, x2) + h2(x)]} (9.53)

Therefore, V (x1, x2, x3) satisfies

V̇ (x1, x2, x3) = d1{−α1φ1(x1, x2) +
∂V1

∂x1

h1(x)

+
∂V1

∂x2

[g2(x2)u2
2(x2, x3) + h2,3(x2, x3) + h2(x)]}

+d2{−α2φ2(x2, x3) +
∂V2

∂x3

h3(x)

+
∂V2

∂x2

[g2(x2)u2
1(x1, x2) + h2,1(x1, x2) + h2(x)]} (9.54)

Furthermore, suppose the interconnection terms together with the controls satisfy the

bound

∥∥∥∥∥
h1(x)

g2(x2)u2
2(x2, x3) + h2,3(x2, x3) + h2(x)

∥∥∥∥∥ ≤ γ11φ1 + γ12φ2

∥∥∥∥∥
g2(x2)u2

1(x1, x2) + h2,1(x1, x2) + h2(x)

h3(x)

∥∥∥∥∥ ≤ γ21φ1 + γ22φ2 (9.55)

for all x ∈ Rn and for some nonnegative constants γij, i = 1, 2; j = 1, 2. Define matrix W as

wij = αi − βiγii, if i = j

wij = −βiγij, if i 6= j (9.56)
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Then we have the following regarding the stability of the interconnected system (9.46).

Theorem 9.6 The expanded closed-loop system is stable with the overlapping decentralized

control law in (9.51) if matrix W is a M-matrix.

Proof: Immediately following the Vector-Lyapunov method.

Let’s consider the following example:

ẋ1 = x3
1 + u1 + x1x2 + 0.1x1x2x3

ẋ2 = x3
2 + u2 + x1x2 + x2x3 + 0.1x1x2x3 (9.57)

ẋ3 = x3
3 + u3 + x2x3 + 0.1x1x2x3

The original system is decomposed into two overlapped subsystems, S1

ẋ1 = x3
1 + u1

1 + x1x2

ẋ2 = x3
2 + u2

1 + x1x2 (9.58)

with the control law for S1

u1
1(x1, x2) = −a1x1 − x3

1 − x1x2

u2
1(x1, x2) = −a2

1x2 − x3
2 − x1x2 (9.59)

and subsystem S2

ẋ2 = x3
2 + u2

2 + x2x3

ẋ3 = x3
3 + u3

2 + x2x3 (9.60)

with the control law for S2

u2
2(x2, x3) = −a2

2x2 − x3
2 − x2x3

u3
2(x2, x3) = −a3x3 − x3

3 − x2x3 (9.61)

Let

V1(x1, x2) =
1

2
(x2

1 + x2
2), V2(x2, x3) =

1

2
(x2

2 + x2
3) (9.62)

be the Lyapunov functions of S1 and S2 respectively. Therefore we have

V̇1 = −(a1x
2
1 + a2

1x2
2) ≤ −min(a1, a2

1)(x2
1 + x2

2) = −α1φ
2
1∥∥∥∥∥

∂V1

∂x1
∂V1

∂x2

∥∥∥∥∥ =

∥∥∥∥∥
x1

x2

∥∥∥∥∥ ≤ (x2
1 + x2

2)
1/2 (9.63)
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where

α1 = min(a1, a2
1), β1 = 1, φ1(x1, x2) = (x2

1 + x2
2)

1/2

and

V̇2 = −(a3x
2
3 + a2

3x2
2) ≤ −min(a3, a2

3)(x2
3 + x2

2) = −α2φ
2
2∥∥∥∥∥

∂V2

∂x2
∂V2

∂x3

∥∥∥∥∥ =

∥∥∥∥∥
x2

x3

∥∥∥∥∥ ≤ (x2
3 + x2

2)
1/2 (9.64)

where

α2 = min(a3, a2
2), β2 = 1, φ2(x2, x3) = (x2

3 + x2
2)

1/2

We also have

∥∥∥∥∥
0.1x1x2x3

−a2
2x2 − x3

2 + 0.1x1x2x3

∥∥∥∥∥ ≤ ‖(a2
2 + 1.2)x2‖ ≤ γ11φ1 + γ12φ2

∥∥∥∥∥
−a2

1x2 − x3
2 + 0.1x1x2x3

0.1x1x2x3

∥∥∥∥∥ ≤ ‖(a2
1 + 1.2)x2‖ ≤ γ11φ1 + γ12φ2

for |x1| ≤ 1, |x2| ≤ 1, and |x3| ≤ 1, where

γ11 = p1(a2
2 + 1.2), γ12 = (1− p1)(a2

2 + 1.2)

γ21 = p2(a2
1 + 1.2), γ22 = (1− p2)(a2

1 + 1.2) (9.65)

with 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1. Then the element of W matrix is

w11 = α1 − β1γ11 = min(a1, a2
1)− p1(a2

2 + 1.2)

w12 = −β1γ12 = −(1− p1)(a2
2 + 1.2)

w21 = −β2γ21 = −p2(a2
1 + 1.2)

w22 = α2 − β2γ22 = min(a3, a2
2)− (1− p2)(a2

1 + 1.2) (9.66)

Therefore the choice of a1 = 3, a3 = 3, a2
1 = 2, a2

2 = 2, p1 = 1, p2 = 0 will make matrix W a

M matrix. Therefore the control law in (9.51) will stabilize the system (9.57) in the region

|x1| ≤ 1, |x2| ≤ 1, and |x3| ≤ 1.
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Chapter 10

Decentralized Reconfiguration

control for Large Scale Systems

with Application to the Segmented

Telescope Test-Bed

A decentralized reconfiguration control DRC system is designed and analyzed for a class of

large-scale systems. The objective of the DRC system is to meet the performance require-

ments under normal and failure situations. The objective is accomplished by integrating

three schemes: nominal controller, fault detection and isolation, and re-configurable control

schemes. These schemes have a decentralized structure for the reason that the implemen-

tation of a centralized reconfiguration control system for large-scale systems is usually not

feasible with existing digital signal processors. However, with a decentralized approach the

feasibility of real-time implementation can be achieved by dividing the total task of the re-

configuration control system into a number of smaller tasks implemented by a number of

processors working in parallel. The proposed design is implemented in real time on a seg-

mented telescope test-bed, and demonstrated to meet the performance requirements in the

presence of sensor failures.

10.1 Introduction

The design of fault-tolerant control systems is one of the most important issues for highly

critical systems such as nuclear power stations, chemical plants, aircrafts, and spacecrafts.

In fact, fault-tolerant control system is used to improve system reliability, maintainabil-

ity, and survivability by completing a task after failure, increasing maintenance time, and

preventing damages, respectively. Most control systems are designed to meet performance
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requirements in the presence of small modeling errors, noise, and disturbances. In many

cases these robust control systems can not guarantee closed-loop stability or performance

in the presence of faults. The inability of robust control systems to accommodate faults

has motivated researchers to design controllers with the ability to tolerate predetermined

faults. These controllers are known as reliable controllers or passive fault-tolerant controllers

where fault tolerance is achieved using a single controller with fixed structure and param-

eters. Methods for passive fault-tolerant control include for example: LQG control [52],

observer-based control with H∞ norm bound [53], decentralized observer-based control with

H∞ norm bound [54], and H∞ control [55]. This approach of fault tolerance has many

disadvantages for instance: a) it is limited to specific types of faults like outage, bias, and

gain changing, b) it can tolerate a pre-selected set of sensors or actuators failures, and c) it

degrades system performances in order to achieve fault tolerance. Therefore, another class

of control system designs that can tolerate various types of faults at the same time maintain

acceptable level of performance is considered especially for systems where failures can lead

to human death/injury or heavy cost. These control systems are called active fault-tolerant

control systems and their structure or parameters or both can be changed on-line to accom-

modate failures. The key element for achieving active fault tolerance is system redundancies.

Redundancies can be provided by: Hardware (physical redundancies), software (analytical

redundancies), or both hardware and software. One method of sensor fault tolerance using

the physical redundancy approach is to have a number of redundant sensors operating in par-

allel with system sensors and voters are used to determine which sensor is failed and should

be taken out of service. Generally speaking, n sensors measuring a quantity can be used to

tolerate (n−1)/2 failed sensors. One practical example of using redundant sensors for sensor

fault tolerance is an electro-mechanical brake pedal system [56]. Four position sensors are

used to sense the movement of the brake pedal and two voters are used to detect a sensor

fault and remove a faulty sensor from the electro-mechanical brake pedal system. The phys-

ical redundancy approach for sensor fault tolerance is straightforward and most likely has

better performance than analytical redundancy approach especially for reducing the risk of

false alarms. However, the cost and space are the main limitations for applying the physical

redundancy approach. The analytical redundancy approach is attractive for fault tolerance

when redundancies can be generated by mathematical functions in software. Following this

approach one can reduce the cost of additional hardware and overcome the problem of space

limitation but with expensive of computational complexity and some possible performance

degradation. In the last decade, the subject of active fault-tolerant control system has drawn

a lot of attention from researchers; see for example [57]- [62]. A good survey on fault-tolerant

control systems is written by Patton [63]. For concepts and methods in fault-tolerant control

one can refer to [64]. Below we discussed some of the techniques proposed in literatures for

sensor fault tolerance using the analytical redundancy approach.
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• Multiple observers with sensor fault detection and isolation (SFDI) scheme [65]: In

this case, n number of state observers are used to estimate n redundant state vectors

where n is the number of sensors. Each observer is driven by one sensor output and all

actuator inputs to generate the estimate of one redundant state vector. A faulty sensor

is identified by a detection logic that operates on the n state vectors and one healthy

redundant state vector selected by the detection logic to be used by the feedback con-

troller. This approach may not be feasible for large order systems with many sensors.

Because n redundant state vectors must be estimated leading to computationally com-

plex calculation when the order of the system is high and n is large. Also, the question

of accurate state estimation in the presence of disturbances needs to be considered.

• Multiple observers using majority rule [66]: This approach also uses multiple observers

but without SFDI scheme. For a state feedback controlled system, the system outputs

are divided into three sets where each output belongs to only one set. Three observers

are used to estimate three redundant state vectors where each observer is driven by all

actuator inputs and one set of sensor outputs. Based on a decision by majority rule,

which is an extension of the scalar case where a middle value of a scalar function is

adopted at time t, one estimated state vector is selected at time t for use by the state

feedback controller. In general this method cannot identify a faulty sensor and the

possibility to adopt an estimated state vector generated by a faulty sensor is possible.

• Pre-computed controllers with SFDI [67]: A number of controllers with a switching

logic are used to select the right controller in the presence of sensor faults. In this

case, each controller is designed off line by taking into account a faulty sensor. When a

sensor fails, a SFDI scheme identifies the faulty sensor and the switching logic selects

one controller designed for that particular faulty sensor case. This method assumes

that the system remains observable with the remaining healthy sensors.

• Neural networks [68]- [70]: In this case, neural networks are used to generate the model

of the system instead of state observers. For example in [70], neural networks are used

to tolerate sensor faults in outdoor ventilation control unit. Three neural networks are

trained to predict the measurements of three airflow sensors that are used in a control

unit. The difference between a sensor reading and its predicted reading generated by

the neural network is used to detect a sensor fault and identify the faulty sensor. For

sensor fault tolerance, the faulty sensor reading is replaced with its estimated value

from the neural network. Many questions are raised in this approach, such as: how

to select the structure of the neural network, the complexity of the neural network

structure, and the time needed for estimation.

• Fault estimation and control reconfiguration [71]: A SFDI scheme is used to identify the

location of the faulty sensor, estimate its magnitude, and use it to modify the control
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law by adding a new compensating term to it. In order to achieve sensor fault tolerance,

this method requires sensor fault magnitudes and estimation of these values requires

heavy computational operations for a large order system with many sensors. Also, the

accuracy of the estimated sensor fault magnitude could be affected by disturbances.

Most of the above techniques require SFDI in order to achieve sensor fault tolerance. The

main task of the SFDI scheme is to detect a sensor fault and identify its location. Several fault

detection and isolation (FDI ) design methods (mostly for sensor/actuator faults) have been

proposed in the last three decades. Examples of well-known methods are: state estimation

( [72]- [74]), parity equations ( [75]- [77]), parameter estimation [78], and neural network

approach ( [79]- [82]). For a good survey in FDI methods, see [83] and for comparison of

different methods of FDI, see [84]. A lot of work have been done to enhance the performance

of FDI schemes in the presence of modeling errors, disturbances, and noise. The objective

in robust FDI is to increase the sensitivity of fault indication signals (residuals) for specific

faults and at the same time reduce the sensitivity of the fault indication signals in the

absence of these faults. Some of the propsed methods for robust FDI include the use of:

robust observer ( [85]- [87]), robust parity equations ( [88]- [90]), and frequency-domain

optimization ( [91]- [93]). For more details on robust FDI, see [94], and [95].

In this chapter, we consider the design and analysis of a decentralized reconfiguration

control DRC system for a class of large-scale systems. We restrict the reconfiguration control

system to have a decentralized structure in order to reduce computational complexity. We

show that sensor faults can be detected, isolated and the decentralized control schemes can

be reconfigured on-line in order to accommodate sensor faults. The proposed design is

demonstrated in real time by implementing it on the segmented telescope test-bed, which

consists of 6-segments giving an overall high order system.

10.2 Large Scale System

A wide class of large-scale systems can be modeled as

ẋ(t) = Ax(t) + B u(t) (10.1)

y(t) = C x(t) (10.2)

where y ∈ Rny is the measured output vector, u ∈ Rnu is the input vector, x ∈ Rnx is

the state vector, and A, B, and C are constant matrices of appropriate dimensions. In the

input-output transfer function matrix the equations (10.1 and 10.2) take the form

y = G(s) u, G(s) = C(sI − A)−1B (10.3)

where
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G(s) =




G11(s) . . . G1N(s)
...

. . .
...

GN1(s) . . . GNN(s)


 (10.4)

is the overall transfer matrix. The (10.3) can be expressed as

yi(s) = Gii(s) ui(s) +
N∑

j = 1

j 6= i

Gij(s) uj(s) i = 1, 2, ....., N (10.5)

where yi ∈ Rnyi , ui ∈ Rnui is the output and input vectors of the i − th subsystem,

Gii(s) ∈ Cnyi× nui , and Gij(s) ∈ Cnyi× nuj represents the interconnection transfer function

matrix between subsystems i and j. The state space representation of (10.5) with the inter-

connections shown separately is given by

ẋi(t) = Ai xi(t) + Bi ui(t) + di(t)

yi(t) = Ci xi(t) i = 1, 2, ......., N
(10.6)

where

Gii(s) : = Ci(sI − Ai)
−1Bi, and

N∑

j = 1

j 6= i

Gij(s) uj(s) : = Ci(sI − Ai)
−1di(s).

In this paper we consider both models (10.1 and 10.2), and (10.6) to design a decentralized

reconfiguration control system that guarantees performance in the presence of sensor faults.

In order to reduce the dimensionality of the control reconfiguration system the interconnec-

tions di in (10.6) are considered as disturbances whose effects are minimized in the design of

the reconfiguration control system.

10.3 Structure of the decentralized reconfiguration control

(DRC) system

For a wide class of large scale systems the model order and the number of sensors and

actuators are large. The number of computational operations needed to implement a recon-

figuration control system scheme for such systems is large and often exceeds the processing

limits of available digital signal processors. The design of an efficient reconfiguration con-

122



trol system that guarantees system performance in normal and failure situations and at the

same time its algorithm can be implemented in real time with available processors is often

a challenging problem in large scale systems. One possible way of designing reconfiguration

controllers for large-scale systems is to consider a decentralized approach. Where the system

is divided into subsystems and a number of local reconfiguration control systems are designed

for each subsystem. Although the decentralized approach reduces the number of computa-

tions and makes real-time implementation easier, it may affect stability and robustness of

the overall closed-loop system systems.

In this chapter, we proposed a DRC system for large-scale systems. The large scale system

consists of N subsystems with N local input/output vectors. Each local input and output

vector generated by a number of actuators and sensors, respectively. N local reconfiguration

control systems are designed for the N subsystems. Fig 10.1 shows the structure of the

proposed DRC system.
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Figure 10.1: The structure of the DRC system

Local sensor fault detection and isolation units are detect local sensor faults and identify

their location. Two types of signals are provided to each local fault detection and isolation

unit: local actuator input and sensor output signals. Based on the information provided by
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the local fault detection and isolation unit, the corresponding local supervision unit isolates

the faulty sensor from the control path, selects a new set of sensors, replaces the existing

local controller with a new local controller, and restructures the local fault detection and

isolation unit for continuous subsystem monitoring.

In the following sections, the three main parts of the DRC system shown in Fig 10.1 are

described in more details.

10.3.1 Decentralized control system design

Most of the existing controllers like H∞ control and LQG control cannot be directly applied

in reality to large-scale systems due to processor limitations. A reduced order controller that

is one way to overcome the problem of processor limitations. If the reduced order controller

still cannot be implemented and no further reduction can be achieved, one can choose a

decentralized approach where a number of less complex controllers (called local controllers)

are designed to control the overall system.

In this section, we present the developed decentralized direct adaptive output feedback

(DDAOF ) controller that has two features. The first one, is the simplicity of the decen-

tralized controller since its has a small order independent of system model order, the second

feature is the stability of closed-loop system can be ensured without tuning the local con-

trollers. The stability is ensured because the local controllers are designed using the overall

model. The decentralized controller is briefly introduced here, for more details see chapter 7.

Fig 10.2 shows the proposed DDAOF for a large-scale system.

Decentralized
   input filter
       G (s)

Actuators Large-scale
    system

Sensors

   DDAOF
control laws

f

G(s)

r +

-

u~ u y

Figure 10.2: Large-scale system with DDAOF control

The N local adaptive control laws are computed as:
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ui = Gfi
(s) ũi i = 1, 2, ......., N (10.7)

ũi(t) = − ki(t) + li(t)

1 + δ (ki(t) + li(t))
yi(t) (10.8)

ki(t) = αiy
T
i (t)yi(t) (10.9)

l̇i(t) = βiy
T
i (t)yi(t) (10.10)

The ki ∈ R, li ∈ R, and δ, αi, βi are design positive constants. The filter Gf (s) and

scalar δ are designed such that G(s)Gf (s)+δI is strictly positive real. It was shown in

chapter 7, these control laws stabilize the closed loop system and bring the system states to

zero asymptotically.

10.3.2 Decentralized sensor fault detection and isolation (DSFDI)

The objective of the DSFDI is to detect the sensor fault (fault detection) and to identify the

location of the faulty sensor (fault isolation). In this section, the design of DSFDI based on

the parity equations method is presented. The DSFDI scheme consists of N local units where

each local unit is responsible for sensor fault detection and isolation in the corresponding

subsystem. Each of the N local units consists of nyi
banks of residual generators where each

bank is driven by all local inputs and one local output. Fig 10.3 shows the i− th local unit

of the DSFDI.
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Figure 10.3: The i-th local unit of sensor fault detection and isolation

The design steps of DSFDI are:

125



• Sensor fault modeling: Many types of sensor faults can be occurred and they

are usually described based on the fault time behavior and magnitude. For example:

Sudden, slowly developing, intermittent, hard, or soft faults. Generally speaking, the

sudden and hard faults must be detected early to prevent controlled system damages.

While for slowly developing faults like drift faults, the detection time is longer because

it is difficult to detect these types of faults early. On another hand, for the soft faults

like small changing in a sensor gain the fault detection may be not necessary since in

general the nominal control system can tolerate it. The effects of these different types

of sensor faults on a system can be modeled as unknown vector (function of time)

adding to the system output vector. In this case the state space equations (10.6) is

written as

ẋi(t) = Ai xi(t) + Bi ui(t) + di(t)

yi(t) = Ci xi(t) + fi(t) i = 1, 2, ......., N
(10.11)

Where fi(t) ∈ Rnyi is unknown sensor fault vector affecting the local sensor readings

of the subsystem i. By modeling sensor faults as additive faults, many types of sensor

faults can be expressed mathematically and also designing a fault detection scheme will

be easier than the case of modeling sensor faults as multiplicative faults.

• Residuals generation: For each subsystem, nyi
banks of residual generators where

each one is driven by all local inputs and one local output are used to generate nyi

sensor failure indication signals called residuals. These residuals are used to indicate

any possible sensor failure and therefore the residuals should be close to zero when there

is no sensor failure and different than zero in the presence of sensor failure. Each bank

of residual generators is designed by using parity equations method and to design one

bank of residual generator, consider the discrete version of the state space equations

(10.11):

xi(k + 1) = Ãi xi(k) + B̃i ui(k) + d̃i(k)

yi(k) = C̃i xi(k) + f̃i(k) i = 1, 2, ......., N
(10.12)

Also consider the j − th sensor output of the subsystem i as:

yij(k) = C̃ij xi(k) + f̃ij(k) i = 1, 2, ..., N and j = 1, 2, ..., nyi
(10.13)

where C̃ij is the j − th row of the matrix C̃i, and f̃ij is the j − th row of the sensor

fault vector f̃i. f̃i. Now the m + 1samples of the output yij can be written as:

126



Yij = Lij xi(k −m) + Mij Ui + Nij Di + Fij (10.14)

where

Yij =




yij(k −m)

yij(k −m + 1)
...

yij(k)




, Lij =




C̃ij

C̃ijÃi

...

C̃ijÃ
m
i




,

Mij =




0 0 · · · 0

C̃ijB̃i 0 · · · 0
...

...
...

...

C̃ijÃ
m−1
i B̃i C̃ijÃ

m−2
i B̃i · · · C̃ijB̃i 0




, Ui =




ui(k −m)

ui(k −m + 1)
...

ui(k)




,

Nij =




0 0 · · · 0

C̃ij 0 · · · 0
...

...
...

...

C̃ijÃ
m−1
i C̃ijÃ

m−2
i · · · C̃ij 0




, Di =




d̃i(k −m)

d̃i(k −m + 1)
...

d̃i(k)




,

and Fij =




f̃ij(k −m)

f̃ij(k −m + 1)
...

f̃ij(k)




The j − th residual of subsystem i is generated as:

rij(k) = V T
ij [Yij −MijUi]

(10.15)

where Vij ∈ Rm+1 is the designed vector and m is the parity equations order to be

selected. The vector Vij is to be found such that the influences of the state vector and

subsystem interactions on the residual rij are minimized at the same time the influence

of sensor failure on the residual rij is maximized. To find such vector, the internal

structure of the equation (10.15) is found by substituting equation (10.14) into (10.15)

to get
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rij(k) = V T
ij [Lijx(k −m) + NijDi + Fij]

(10.16)

It is clearly that the residual depends on the system state vector, the subsystem in-

teractions, and sensor fault. To minimize the effects of state vector and subsystem

interactions and to maximize the effect of sensor failure on the residual, the following

performance index is minimized for Vij

Jij =

∥∥∥∥∥ V T
ij

[
Lij

...Nij

] ∥∥∥∥∥

2

2∥∥∥ V T
ij ‖2

2

(10.17)

where the optimal vector Vij is found by using singular value decomposition.

• Residuals testing: Each residual is tested for the likelihood of sensor fault. A

decision about existing a sensor failure is made by comparing the absolute value of the

residual to a pre-selected threshold value. If the residual absolute value exceeds the

threshold value, a sensor failure will be considered in the system. The threshold values

can be selected from experiments to reduce false alarms coming from noise, modeling

errors, subsystem interactions, and disturbances.

• Sensor fault isolation: The location of sensor failure location is the most important

information required by the supervision system. For this reason, nyi
banks of residual

generators are used in each of the N local units of DSFDI scheme. In this case, the nyi

residuals will react differently to any number of sensors failed simultaneously. These

different reactions (sensor failure codes) of the nyi
residuals are used to find the location

of faulty sensor(s).

10.3.3 Supervision system

The supervision system is used to integrate diagnostic information with switching controllers.

In the subsystem i, each local controller is driven by nyi
local sensor outputs and therefore

nyi
switching controllers are off-line designed for the nyi

cases of faulty sensors. If one of

the sensors is failed, one of the switching controllers will be activated based on the infor-

mation provided by a local unit of DSFDI. In general, there are N local units of sensor

fault detection and isolation and N local controllers with nyi
switching controllers for each

subsystem and they are integrated together through N supervision units. Each supervision
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unit is locally responsible for:

• Removing a failed sensor from the closed loop system: The location of a faulty sensor,

that is provided by a local unit of DSFDI, is supplied to the corresponding supervision

unit for isolating the faulty sensor from the local closed loop system

• Selecting a new set of sensors : After the faulty sensor is removed from the closed loop

system, the remaining healthy sensors (original plus redundant sensors) are used for

controlling the subsystem.

• Switching to a pre-designed controller : Once the faulty sensor is removed from the

feedback path and a new set of sensors is selected, a switching logic replaces the current

local controller driven by a sensor fault with a pre-computed controller designed for

that case of the failed sensor. The pre-computed controller is off-line designed for a

new set of sensors assuming one sensor is failed at a time.

• Restructuring a local-unit of DSFDI: To continue monitoring the system after accom-

modating a sensor failure, the input signals (sensor measurement signals) to a local

unit of DSFDI are replaced with a new set of sensor output signals.

10.4 Real time implementation and experimental results

10.4.1 Real time implementation

Three digital signal processors are used to implement the proposed DRC algorithm. The

three processors are running in parallel to handle the computational operations required for

the DRC algorithm. The algorithm is written in C + + language and its flowchart is shown

in Fig 10.4.
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Figure 10.4: The flowchart of DSFTC algorithm

Each of the three digital signal processors is used to implement a part of DRC algorithm.

The DSP-A is responsible for panels no. 5 and 6, the DSP-E is responsible for panels no. 1

and 2, and the DSP-F is responsible for panels no. 3 and 4. The data of controllers, sensor

fault detection and isolation, and switching controllers are saved in the corresponding local

memory spaces of the three digital signal processors. The DSP-A is the master processor,

because it is used to send sensor readings to DSP-E and DSP-F and also receive command

signals from DSP-E and DSP-F. Furthermore, the DSP-A is used to save data of sensor

outputs, command signals, and residuals in the external memory disk (SCSI ).
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10.4.2 Experimental results

10.4.2.1 Decentralized direct adaptive control results

In the future mission of a real segmented space telescope system the information from the

far region in the space will be collected by the light that is hitting its primary mirror and

then reflecting by its secondary mirror to a focal plane in a central panel for information

collection. Therefore it is important for the primary mirror to behave as a desired single

surface. The deviation of the primary mirror shape from the desired shape is characterized

by the edge sensor readings. In the test-bed, 6 shape error Sei values for the 6 active panels

are used to indicate how far the primary mirror is from its desired shape and are defined as:

Sei =

√
ỹT

i ỹi

3
i = 1, 2, ......., 6 (10.18)

where ỹi is the i− th local output vector of the subsystem i after filtering measurement

noise. The objective of a control system is to reduce the effect of disturbances on the Sei

values by 100:1 at steady state. To achieve the control objective, 6 local controllers (DDAOF

controller) are designed to control the position of the 6-active panels. Fig 10.5 shows the:

sensor outputs, control commands, and shape errors for the closed loop system with DDAOF

control.
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Figure 10.5: Results of the primary mirror system with DDAOF control

The results show that the DDAOF controller can reduce the shape errors by ratio of

100:1. Table 10.1 also demonstrates that by showing the initial shape error values and shape

error values at 240 s.
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Subsystem
no.

Shape error value in µm at
0 s

Shape error value in µm at 240
s

1 107.979 0.66
2 251.199 0.72
3 363.237 1.05
4 233.563 1.07
5 159.361 0.5
6 124.334 0.3

Table 10.1: The shape error values.

10.4.2.2 Decentralized sensor fault detection and isolation(DSFDI) results

An inductive sensor is used to measure a target displacement with respect to a sensor refer-

ence plane. Fig 10.6 shows the structure of an inductive sensor (KDM-8200 ).
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Figure 10.6: The inductive sensor (KDM-8200) structure

The sensor operates as follows: An electromagnetic field propagates out from a sensor

coil due to Ac current in the sensor coil. This electromagnetic field will generate an induced

current in a conductive target, which will generate another electromagnetic field opposite to

the original one. When the target is moving, the intensity of the electromagnetic filed in

the coil will change and the result of this changing is a new sensor impedance. A detector

senses this new impedance and a converter is used to provide a voltage directly proportional

to the target displacement. For the common types of sensor faults that could happen for

the inductive sensor KDM-8200, Table 10.2 shows the causes and symptoms of commonly

inductive sensor faults.
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Cause Symptom
Power supply off Outage
Incorrect calibration Drift, degradation, or amplifying actual reading
Open sensor coil Saturated output at 10 volts
Short circuit Unchanging output voltage at low voltage
Intermitted cable Random output signal

Table 10.2: Commonly inductive sensor faults.

To detect and isolate these faults, 3 banks of residual generators are designed based on

parity equations method for each of the 6 subsystems. For the best selecting value of the

parity equations order m, Fig 10.7 shows the performance index values for the different

values of m and for two cases: one for optimal Vij and another for average Vij ,i.e., V T
ij =

1
m+1

[
1 1 · · · 1

]T

.

 

Figure 10.7: The performance index values for different values of m

It is clear from the Fig 10.7 the optimal vector Vij can decrease the performance index

value for increasing value of m however, the average Vij will increase the performance index

value for increasing value of m. Also, the best value of m is 3 since for m ≥ 3 the performance

index value is little changing. Once the 3 residual signals are generated for each of the 6
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subsystems. The different reactions (sensor failure codes) of these residuals are used to find

the location of faulty sensor(s) on each subsystem according to the Table 10.3.

Faulty
sensor no.

No fault Si1 Si2 Si3 Si1&Si2 Si1&Si3 Si2&Si3 Si1&Si2&Si3

Residuals
ri1 0 1 0 0 1 1 0 1
ri2 0 0 1 0 1 0 1 1
ri3 0 0 0 1 0 1 1 1
Sij: sensor no. j of subsystem i.
1: the absolute value of the corresponding residual exceeds the threshold
value.
0: the absolute value of the corresponding residual dose not exceed the
threshold value.

Table 10.3: Sensor failure codes for subsystem i.

To examine the effectiveness of the DSFDI scheme, the following 6 cases are considered

as examples to show how the residuals will behave against:

1. Sensor fault free: In this case, all 18 sensors are normally operated.

2. Sensor fault free with external disturbances : External disturbances are applied on the

primary mirror to see how the 18 residuals will react with existing disturbances.

3. One sensor is saturated : We create a saturated fault on one sensor by programming

a c++-code to include this type of fault on one selected sensor. The fault takes place

at 5 s with a stack value of 10 volts to simulate a real situation when a sensor coil is

opened.

4. One sensor is randomly failed : The fault takes place at 2 s with different values of sensor

output and then stack at 2 volts. With this fault, we tried to emulate a situation when

a sensor cable is connected and disconnected in a random way.

5. The output of one sensor is unchanged with a low voltage: The fault represents a sensor

short circuit. In this case, we consider a fault takes place at 30 s with unchanged sensor

output of 2 volts.

6. With external disturbances, two sensors are failed with a random fault and a low voltage

fault : We add external disturbances on the primary mirror then one sensor is randomly

failed at 2 s and another one is failed with unchanged low voltage at 20 s.
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Fig 10.8 shows the 18 residual signals for all 6 cases. In these results, all residuals generated by

non-faulty sensors have small values comparing to other residuals generated by faulty sensors.

Also notice that, all faulty residuals stack (not drift) because we imposed magnitude limits

on all actuators inputs to prevent system breakdown when we apply these created faults.

Furthermore, these residuals are evaluated to find best threshold values that will prevent

false alarms coming from system noise, external disturbances, subsystem interactions, and

modeling errors. The same results have been conducted on other sensors, but because of

space limitation they are not present here.

 

 

Figure 10.8: The Residual signals for all 6 cases

136



Table 10.4 shows the fault occurrence time and isolation time for the last 4 cases with

thresholds values selected to be 0.3 volt for all 18 residuals.

Case no. Fault(s) occurrence
time (s)

Fault(s) isolation
time (s)

3 5 5.001
4 2 5.502
5 30 30.001
6 2

20
5.502
20.001

Table 10.4: Fault occurrence and isolation time.

10.4.2.3 Decentralized reconfiguration control results

Once the sensor fault is detected and isolated by the decentralized sensor fault detection

and isolation scheme and the location of the faulty sensor is provided to the supervision

system. The local controller effecting by the sensor fault is removed from the service and

a switching controller design for that case of faulty sensor is adapted to the service. Four

cases are presented here to show the ability of the decentralized reconfiguration control

system to tolerate sensor failures, these cases are the last four cases considered for testing

the decentralized sensor fault detection and isolation scheme. In Fig 10.9, the sensor no.

1 is failed at 5 s by fixing the sensor output at 10 volts. The results show that with the

nominal decentralized control only, a number of actuator inputs are saturated and the shape

error for subsystem no. 1 is far away (14400 µ m) from the desired shape error (≤1µ m).

However, with the decentralized reconfiguration control system the corresponding local unit

of DSFDI quickly detects and isolates this fault and a corresponding switching controller is

immediately adapted to the service. All 18 actuator inputs are within the limits and the 6

shape errors are less than 1 µ m at 120 s.
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Figure 10.9: Sensor no. 1 is failed (case no. 3): Without DRC (left column); With DRC
(right column)

The same conclusions can be made when the sensor no. 18 is failed at 30 s with unchanging

output voltage of 2 volts (Fig 10.11). In Fig 10.10, the sensor no. 4 is failed with the random

fault at 2 s and the results are: Two actuators inputs belong to the subsystem no. 2 are

saturated and all 6 shape errors are larger than 1 µ m (these results are clearly shown

in Table 10.5). But with the decentralized reconfiguration control system, the closed loop

system performance is much better with expensive of transient at switching time. The same

conclusions can be made for the last case (Fig 10.12) where in this case the sensor no. 3 and

8 are failed in the presence of external disturbances at 2 s and 20 s with the random fault

and unchanging low voltage volt fault, respectively.
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Figure 10.10: Sensor no. 4 is failed (case no. 4): without DRC (left column); with DRC
(right column)
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Figure 10.11: Sensor no. 18 is failed (case no. 5): without DRC (left column); with DRC
(right column)
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Figure 10.12: Sensor no. 3 and 8 are failed in the presence of external disturbances (case no.
6): without DRC (left column); with DRC (right column)
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Table 10.5 shows the steady state shape errors with and without decentralized reconfig-

uration control system for all 6 subsystems.

Case no. 3 4 5 6
Subsystem
no.

Without
DSFTC

With
DSFTC

Without
DSFTC

With
DSFTC

Without
DSFTC

With
DSFTC

Without
DSFTC

With
DSFTC

1 14400 0.61 69.12 0.58 26.48 0.88 428.13 0.53
2 0.89 0.89 2930 0.29 20.73 0.41 32.60 0.41
3 2.83 0.44 4.34 0.77 2900 0.04 187.78 0.69
4 12.83 0.78 2.93 1.10 14.68 0.49 2970 0.97
5 0.41 0.06 1.81 0.30 2.84 0.15 37.69 1.10
6 103.57 0.61 8.26 0.40 3.71 0.40 2910 1.40

Table 10.5: The steady state shape errors (µ m).
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