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Abstract 

The control of large segmented telescopes is a challenging one due to the complexity and high order of 

the system. The high order dynamics lead to high order controllers that require more memory and faster 

computations for implementation. While this may not pose a serious problem for a small number of 

segments, as the number of segments increases the computational requirements are becoming enormous.  

In this article, we use the test-bed developed at California State University, Los Angeles, that simulates in 

real-time a large segmented telescope to test the performance and computational requirements of several 

control designs. Three decentralized control designs were selected for implementation. These include a 

decentralized state feedback proportional plus integral (DSFPI) controller, a decentralized output 

feedback proportional plus integral (DOPFI) controller, and a decentralized direct adaptive output 

feedback (DDAOF) controller. 

The DSFPI controller requires more memory space and computational power than the DOFPI and 

DDAOF controllers. The DOFPI requires less memory space and computational operations but it fails to 

meet the performance requirements. The DDAOF requires an acceptable amount of memory space and 

computational operations and has better performance than the other two controllers.  
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1. Introduction 

The main objective of designing a next generation space telescope (NGST) is to gather information from 

the far regions of space. The information will be used for understanding the: Universe structure, birth and 

formation of stars, and origins and evolution of planetary systems and galaxies. The key element to 

achieve these goals is to build a space telescope with a large reflector mirror. For instance, increasing the 

diameter aperture of the reflector mirror to 8 m from the 2.4 m in the Hubble Space Telescope (HST) the 

space telescope will be capable of collecting information from regions ten times farther away than the 

regions covered by the HST. Many difficulties are associated with the size of such reflectors, for example: 

It is difficult and expensive to manufacture a single large reflector, and a complex technology is required 

to launch such a space telescope. A possible way to overcome these problems is to build a space telescope 

with a number of small mirrors. These mirrors can be deployed inside the space launch vehicle and then 

adjusted together in the orbit to form a desired shape of a single larger reflector. On earth a very large 

reflector mirror can be developed by using smaller mirrors that are easier to manufacture and less costly. 

Maintaining the desired shape so that the segmented reflector behaves as a single reflector in the presence 

of disturbances is a challenging control problem due to the complexity of the system, the large number of 

sensors, and actuators and the computational requirements for implementation of the controllers. 

 In this article we consider the design, simulation, and implementation of a number of simple control 

techniques for controlling large segmented telescopes. A test-bed (Fig. 1) located at the Structures 

Pointing and Control Engineering (SPACE) Laboratory of California State University, Los Angeles, is 

used for testing and implementation. The test-bed was constructed by a team of faculty and students from: 

California State University, Los Angeles, California State University, Long Beach, University of Southern 

California, Los Angeles, and University of California, Berkeley The National Aeronautics and Space 

Administration (NASA) funded the development of the test-bed and control experiments. 
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Figure 1.  Segmented telescope test-bed at SPACE Lab 

In our approach we reduce the complexity of the controller by taking a decentralized approach [1] where 

each plate corresponding to a single mirror is considered as one subsystem. Then controllers with low 

computational requirements are developed for all subsystems. These include: decentralized state feedback 

proportional plus integral (DSFPI) control, decentralized output feedback proportional plus integral 

(DOFPI) control, and decentralized direct adaptive output feedback (DDAOF) control. We demonstrated 

experimentally that the DDAOF controller meets the performance requirements with an acceptable 

amount of memory space and computational operations. The DDAOF is based on output feedback and on 

a strict positive real condition for designing the adaptation law. 

This article is organized as follows. First we describe the segmented telescope test-bed and experimental 

set-up. The mathematical model of the test-bed and the performance requirements are then presented. 

Next we design and analyze three different decentralized controllers. Finally the experimental results are 

presented with our conclusions.  
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2. Segmented Telescope Test-Bed 

The segmented telescope test-bed is used to simulate a more complex next generation segmented 

telescope (NGST) system. The structure of the test-bed consists of three main parts: a primary mirror, a 

secondary mirror, and a support truss. The test-bed is positioned on a solid table to support the structure’s 

weight and it is isolated from the ground with dampers in order to damp any external vibrations 

propagated from the ground. The primary mirror consists of 6-active panels surrounding a fixed center 

panel and each panel has a hexagonal shape with diameter of 101 cm. All active panels are attached to 

18-actuators (three per panel) to support the weight of the panels and also to generate forces to move the 

panels. Furthermore, 18-edge sensors are used to measure the relative displacements between the panels. 

Fig. 2 shows the structure of the segmented telescope test-bed and the location of actuators and edge 

sensors on the bottom of the primary mirror. 

 

 

 

 

 

 

 

Figure 2.  The test-bed structure with location of actuators and edge sensors on the primary mirror 
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The secondary mirror, which is a 6-sided pyramidal mirror, is used to reflect light from the primary mirror 

to the focal plane in the center panel. The secondary mirror is actively controlled by 3-actuators, which 

are attached to the secondary truss at 3-nodes. It is also equipped with 3-position sensors to provide the 

location of the secondary mirror with respect to its housing. The truss structure is designed to support the 

primary and the secondary mirrors. It is attached to the primary mirror at 18-nodes and to the secondary 

mirror at 3-nodes. The truss is made of stainless steel to provide the highest strength with lowest mass.  

The test-bed components and data flow through the system are shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Test-bed components and data flow through the system 
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The readings from the 18-edge sensors that measure the relative displacements of the panels from their 

nominal positions corresponding to the desired primary mirror shape are sampled using 3 A/D cards. An 

18-channel sensor display is used to display in real-time the sensor readings for monitoring purposes. The 

digital signal processor, DSP card-A, receives the sampled measurements of the 18-edge sensors and 

sends the 12-edge sensor readings 6 of which correspond to panels no. 1, 2 and the other 6 to panels no. 3, 

4 to the DSPs card-E and card-F respectively. The control algorithms implemented using the 3-DSPs are 

used to generate the control commands that drive the 18-actuators. The 18-control commands are passed 

through the 3 D/A Cards to the 3-banks of amplifiers and then to the corresponding actuators. For data 

collection, an external memory disk (SCSI) is used to save the on line 18-edge sensor readings and 18-

control commands. A host computer supported by MATLAB software is used to plot the results. The 

characteristics of the sensors, actuators and other important components of the experimental setup are 

described below 

Edge sensors: The 18-inductive edge sensors are used to indicate any deviation in the primary mirror 

shape from its desired shape. 12-edge sensors out of 18 are used to measure the relative displacements 

between the fixed and active panels, and the other 6-edge sensors are used to measure the relative 

displacements between the active panels. Each edge sensor has a low noise level, high resolution of 0.1 

µm, wide range of measurements up to 6 mm, bandwidth of 50 kHz, typical offset of 0.89 mm, and output 

range of  +/- 15 volts. 

Actuators: These are high performance linear electromagnetic force actuators used to actively control 

each active panel and support its weight. For each active panel, three actuators are used to change its 

position and the overall shape of the primary mirror. By applying the proper forces to the active panels, 

the shape of the primary mirror can be maintained to the desired one in case of any deviation. These 

actuators have a low noise level, a bandwidth of 100 Hz, and can generate forces up to 53.5 Newton. 
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Amplifiers: The linear amplifiers are used to amplify the signal received from the D/A converter before 

sent to the actuators. These amplifiers have high bandwidth and can be operated in velocity or current 

mode. In the test-bed, the amplifiers are operated in current mode. The input range of the amplifier is +/- 

15 volts and its gain can be calibrated to three different gains. 

A/D and D/A converters: For the purpose of control application, 3-cards of dual A/D and D/A converters 

are used to provide 18-channels of A/D and D/A conversion. The A/D converter has the appropriate analog 

input range consistent with the range of the output voltage of the sensor; it is used to convert the output 

voltage of the sensor into a proportional binary output. The D/A converter is used to convert the controller 

command into an analog signal for the actuator. These converters have 16-bit resolution with a sampling 

frequency range from 320 Hz to 250 kHz.   

Digital signal processors: The digital signal processor (DSP) is the main computational unit. It uses the 

sampled signals from the A/D converters and performs arithmetic processing on these signals. The 

resulting signals are converted back to a continuous signal using the D/A converters. Three processors 

TMS320C40’s, which are labeled as DSP-A, DSP-E, and DSP-F, are used to implement the control 

algorithms. Each processor has 2 megabits of RAM. Because all processors are linked together by 

common ports, all three processors can use the 6-megabits of RAM simultaneously. Furthermore, a data 

rate of 20 megabites/sec can be transferred between the processors. The three processors are connected to 

a host computer by a MIX-card and the connection is supported by a Pentek’s SwiftNet software. For data 

collection, an external memory disk (SCSI) is used to save the data from the test-bed. In the test-bed, the 

control algorithms are written in C++ language and then converted to assembly language using a C-

compiler. The assembly codes are required in order to program the DSPs. 
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3. Model of the Primary Mirror System 

A mathematical model of the primary mirror system was obtained using frequency domain techniques [2]. 

The relationship between the edge sensor outputs and actuator inputs is given by  

 

11 12 13 14 15 16
1

21 22 23 24 25 262

3 31 32 33 34 35 36

4 41 42 43 44 45 46

5
51 52 53

6

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

G s G s G s G s G s G sy
G s G s G s G s G s G sy

y G s G s G s G s G s G s
y G s G s G s G s G s G s
y G s G s G s
y

 
 
 
 
 
  = 
 
 
 
   

1

2

3

4

5
54 55 56

6
61 62 63 64 65 66

) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

u
u
u
u
uG s G s G s
u

G s G s G s G s G s G s

 
                                       

 (1) 

where 3 3( )ijG s ×∈ ^  is the transfer function matrix from the j-th input vector to the i-th output vector. The 

input and output vectors consist of the following actuator inputs and edge sensor outputs where the 

subscript number i  in the input iu  and output iy  corresponds to the active panel number 
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Ac and Es stand for the actuator input and edge sensor output, respectively. The state space 

representation of the primary mirror system obtained from (1) is given by 
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where  320x ∈ ℜ  is the state vector, andA , iB  and iC  are known matrices of appropriate dimensions. 

Performance requirements: The quality of the information that will be collected by a segmented space 

telescope depends mainly on the alignment of its secondary and primary mirrors; misalignment between 

the mirrors can cause information loss or quality degradation.  The shape of these mirrors can easily 

deviate from its desired shape in the presence of disturbances. Therefore, it is important for the primary 

mirror to behave as a desired single surface in the presence of disturbances. In the test-bed, the deviation 

of the primary mirror shape from the desired shape is characterized by the root mean square of the edge 

sensor outputs of each of the 6-active panels. The shape error iSe values are used to indicate how far the 

shape of the primary mirror is from its desired shape and are defined as: 

1,2,....., 6
3

T
i i

i
y ySe i= =� �

 

 where iy� is the average of the i-th local output vector iy  measurements over a window of 1000 samples. 

The control design objectives are as follows 

• The iSe value for each active panel is less or equal to 1 µm at steady state, i.e., 1iSe ≤  for 

1, 2, ....., 6i =  

• The effect of disturbances on the iSe  value is reduced by the ratio of 100:1 at steady state. 

4. Decentralized Control Designs 

The model order of the primary mirror system is very large, which means that the computational 

complexity associated with the implementation of a centralized controller is very high. For example, using 

an H∞ or linear quadratic regulator (LQR) control design technique the order of the resulting controller is 

equal or larger than the order of the primary mirror model. For real-time implementation of these high 
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order controllers, a single processor with high computational power is required. These processors are 

either expensive or not available for a particular implementation. One way to overcome this problem is to 

divide the primary mirror system into a number of subsystems and then design a less complex controller 

(local controller) for each subsystem. These local controllers can be simultaneously implemented using a 

number of less expensive processors working in parallel. In this work, three types of decentralized 

controllers are designed and implemented to the primary mirror system. Each local controller is 

responsible for the control of a single active panel, adding up to a total of 6-local controllers. Our 

objective is to design and implement different simple decentralized control schemes, compare their 

performance and computational effort, and come up with candidate controllers that meet the performance 

requirements with the least computational effort. 

4.1 Decentralized State Feedback Proportional Plus Integral (DSFPI) Control 

For the design of the DSFPI control we express the primary mirror model (1) as 
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where the diagonal elements in the first matrix represent the dynamics of the 6-active panels when they 

are isolated from the other panels. The second matrix represents the interactions of the panels with each 

other. For the purpose of decentralized control design, theses interactions are ignored. The state space 

representations of the 6-decoupled subsystems are given by 
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where 40
îx ∈ℜ  is the estimate of the i-th local state vector ix . The gain matrices 40 3

iF
×∈ ℜ , 3 40

ik
×∈ ℜ , 

and 3 3
il

×∈ ℜ  are obtained following the standard LQR plus integral design procedure [3]. The controller 

gains are varied using different weights in the LQR cost until a desired closed-loop response is obtained. 

4.2 Decentralized Output Feedback Proportional Plus Integral (DOFPI) Control 

The state space realization of the designed DSFPI control has a large order for each local controller. For 

this reason, we seek another decentralized control design that has a small order. The obvious way is to 

consider a DOFPI control instead of using a state feedback. In this case, the order of each local controller 

is reduced to the number of local outputs. In this work, the DOFPI control is designed following different 

approach than the one used to design the DSFPI control. In fact, the local controllers are designed using 

the overall model (2) of the primary mirror system. The 6-local output feedback proportional plus integral 

controllers are generated by 
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where the gain matrices 3 3
ik

×∈ ℜ
�

 and 3 3
il
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�

 are obtained using a Lyapunov inequality equation and 

the overall system model. The details of computing the controller gains are presented in Appendix A. 

4.3 Decentralized Direct Adaptive Output Feedback (DDAOF) Control 

The structure of the proposed DDAOF control is shown in Fig. 4. 

 

 

 

 

Figure 4. The primary mirror system with DDAOF control 
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[6]. In Appendix B we present the design details and stability analysis of the proposed DDAOF control 

scheme. 

5. Experimental Results 

The three controllers presented in the previous section are discretized first using a sampling period of 1 

ms and then implemented to the primary mirror system. The flowchart of the decentralized control 

algorithm is shown in Fig. 5 where the 3-DSPs are used in parallel to implement the proposed 

decentralized controllers.  
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Figure 5. The flowchart of decentralized control algorithm 
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The real-time results for the three controllers are shown in Figures: 6, 7, and 8 for the 18-edge sensor 

outputs, 18-control commands, and 6-shape errors. In order to examine the effectiveness of the 

controllers, initial shape errors are created on the position of the primary mirror panels by adding constant 

loads on the panels. For the DSFPI control, the number of states for each subsystem is 40. The number of 

computational operations required to implement the DSFPI control is large and cannot be handled by the 

available DSPs. For this reason, we reduced the order of the 6-decoupled system models and designed 

new controllers with 17-states for each local controller. The 18-edge sensor outputs, 18-control 

commands, and 6-shape errors for the closed-loop system with reduced order DSFPI control are shown in 

Fig. 6. 

 

Figure 6. Closed-loop real-time results with DSFPI control (right column shows the steady state results) 
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These plots indicate that the closed-loop system is stable, the effect of the disturbances is reduced, and the 

control effort for all 18-actuators is within the limits (+/-1 volt). For the DOFPI controller, the number of 

computational operations is dramatically reduced when compared with the DSFPI controller, since the 

number of controller states is now 3 for each local controller. The closed-loop system performance 

however is worst than that of the DSFPI controller as shown in Fig. 7.  

 

Figure 7. Closed-loop real-time results with DOFPI control (right column shows the steady state results) 
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The implementation results for the proposed DDAOF controller are shown in Fig. 8. The DDAOF 

controller reduces the effect of the disturbance on the primary mirror panels by 100:1 faster than the other 

two designs.  

 

 

Figure 8.Closed-loop real-time results with DDAOF control (right column shows the steady state results) 
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Table 1 shows the comparison between the three types of controllers. 

 

 

 

 

 

TABLE 1: The shape error values for the three types of controllers 

The time it takes to compute any 18-control command samples by the 3-DSPs (the sampling time is 1 ms) 

is 

• 0.78 ms for the DSFPI control 

• 0.2 ms for the DOFPI control 

• 0.29 ms for the DDAOF control. 

These results indicate that the DOFPI and DDAOF controllers take much less computational power of the 

3-DSPs than the DSFPI controller. However, the DOFPI controller fails to meet the performance 

requirements. Overall the DDAOF controller performs better and required low computational effort. 

 

 

 

Initial shape error values in µm. Shape error values in µm at 240 s. Panel no. 

 
DSFPI  DOFPI  DDAOF DSFPI  DOFPI  DDAOF  

1 277.339 61.640 107.979 1.43 2.6 0.66 

2 318.624 71.132 251.199 0.72 15.7 0.72 

3 259.205 151.658 363.237 1.01 1.44 1.52 

4 214.905 52.087 233.563 0.27 1.94 1.17 

5 272.448 55.378 159.361 4.57 2.69 0.5 

6 278.812 101.999 124.334 2.08 7.20 0.3 
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6. Conclusions 

In this article, we use the test-bed developed at California State University, Los Angeles, that simulates in 

real-time a large segmented telescope to test the performance and computational requirements of several 

control designs. Three decentralized control designs were selected for implementation. These include a 

decentralized state feedback proportional plus integral (DSFPI) controller, a decentralized output 

feedback proportional plus integral (DOPFI) controller, and a decentralized direct adaptive output 

feedback (DDAOF) controller. 

The DSFPI controller requires more memory space and computational power than the DOFPI and 

DDAOF controllers. The DOFPI requires less memory space and computational operations but it fails to 

meet the performance requirements. The DDAOF requires an acceptable amount of memory space and 

computational operations and has better performance than the other two controllers.  

 

Acknowledgements 

We would like to thank Dr. Boussalis, Dr. Mirmirani, Mr. Rad from California State University, Los 

Angeles (CSULA), and Dr. Kun Li former Ph.D. student of the University of Southern California, Los 

Angeles, for numerous discussions and support. We also acknowledge the support of Demetrios, 

Salvador, Alex, and the rest of the students in the SPACE lab at CSULA. 

 
 
 
 
 
 
 
 



 20

 
 

Appendix A: Decentralized Output Feedback Proportional Plus Integral (DOFPI) Control 

Consider the state space representation of a system given by 

 
x Ax Bu

y Cx

= +

=

�
 (4) 

where nx ∈ℜ is the system state vector, 1 2
T T T T q

mu u u u = ∈ ℜ  …  is the input vector, and 

1 2
T T T T q

my y y y = ∈ ℜ  …  is the output vector. The matrices A , B , and C  are of appropriate 

dimensions. We differentiate the state equation (4) with respect to time t and express it as 

v v

v

v A v B u

y C v

= +

=

� �
 

where 

0
[ ] , , , 0 .

00
T T T

v v v

A B
v x y A B C I

C

   
    = = = =            

�  

We propose the following structure for the local controllers 

 
0

( ) ( ) ( ) 1,2,.......,
t

i i i i iu t k y t l y d i mτ τ= − − =∫
� �

 (5) 

 

where the gain matrices ik
�

, and il
�  are to be selected. The local controllers (5) can be written in a compact 

form as u F v= −�  where F has the following structure 
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1 1 1

2 2 2

0 0

0 0

0

0 0m m m

k C l

k C l
F

k C l

 
 
 
 
 =  
 
 
 
  

� �
"

� �
"

# # # %
� �

"

 

where 1 2[ , , ......, ]T T T T
mC C C C= . The following Lyapunov inequality equation is used to compute the 

constant gain matrix F that stabilizes the closed-loop system. 

 ( ) ( ) 0T
v v v vP A B F A B F P− + − <  (6) 

The problem is to find a positive definite matrix P and the controller gain F satisfying (6). This problem is 

not easy to solve because the Lyapunov inequality equation (6) is not linear in terms of P and F. However, 

if we fix 0P >  then the Lyapunov inequality is converted to a linear matrix inequality (LMI), which can 

be easily solved for F. 

The design procedure for the DOFPI is summarized in the following steps 

I. Add and subtract each of ePA  to the first part and T
eA P to the second part of the inequality (6) to get  

( ) ( ) 0T
v e e v v e e vP A A A B F A A A B F P+ − − + + − − < . 

The matrix eA  is selected such that all eigenvalues of v eA A+  have a negative real part. This 

modification is required for the next step because vA  has a number of eigenvalues at zero. For 

example one can select
0 0

0eA Iε
 
 =  
  

, where ε is a negative scalar 

II. Find the positive definite matrix P satisfying: ( ) ( )Tv e v eP A A A A P Q+ + + = − , where Q is 

any positive definite matrix. For example select Q I=  
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III. Solve ( ) ( )Te v e vP A B F A B F P Q− − + − − <  for F using the LMI-toolbox [7].       

 

Appendix B: Decentralized Direct Adaptive Output Feedback (DDAOF) Control 

Consider the proposed DDAOF controller shown in Fig. 9.  

 

 

 

 

 

Figure 9. The proposed DDAOF controller 

 

The state space realization of the filter ( )fG s is given by 

x Ax Bu

u C x Du

= +

= +

� ��� � �

� �� �
 

where 

{ }
{ }
{ }
{ }

1

1

1

1

1

1

T T T T n
i m

T T T T q
i m

i m

i m

i m

i m

x x x x R

u u u u R

A diag A A A

B diag B B B

C diag C C C

D diag D D D

 = ∈  
 = ∈  

=

=

=

=

�� � � �… …

� � � �… …

� � � �… …

� � � �… …

� � � �… …

� � � �… …

 

, , ,j j j jA B C D� � � �  are constant matrices of appropriate dimensions and 1( ) ( )fG s C sI A B D−= − +�� � � . 

( )G s  )(sGf  u  u�  y  

+

DDAOF 
control laws 

−
0r =  
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Let ( ) ( ) ( )m fG s G s G s Iδ= + where δ  is a scalar. The state space representation of ( )mG s  is given by 

 
ˆ ˆˆ ˆ

ˆ ˆ

x Ax Bu

y C x u y uδ δ

= +

= + = +

� �

� � �
 (7) 

where 

ˆ ˆ ˆˆ , , , 0 ,
0

T
T T n n

A BC BD
x x x R A B C C

BA
+

   
      = ∈ = = =              

�
� �

� � �  

 
and  A, B, C are from the state space realization of 1( ) ( )G s C sI A B−= −  

Theorem 1: If there exist a scalarδ and filter ( )fG s  such that ( ) ( ) ( )m fG s G s G s Iδ= + is SPR, then the 

following DDAOF control laws 

 

 

( ) 1,2, ,

( ) ( )( ) ( )
1 ( ( ) ( ))

( ) ( ) ( )

( ) ( ) ( )

ii f i

i i
i i

i i

T
i i i i

T
i i i i

u G s u i m

k t l tu t y t
k t l t

k t y t y t

l t y t y t

δ

α

β

= =

+= −
+ +

=

=

� …

�

�

 (8) 

where iα and iβ  are design positive constants, can stabilize the system of Fig. 9 and force the output 

vector y to zero exponentially fast. 

The following Lemma is used to prove Theorem 1. 

 

Lemma 1-Kalman-Yakubovich-Popov lemma [8]: The transfer function matrix 

1ˆˆ ˆ( ) ( )mG s C sI A B Iδ−= − +  is SPR if and only if there exist matrices 0TP P= > , L, and W, and a 

constant ε > 0 such that 
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ˆ ˆ

ˆ ˆ

2

T T

T T

T

PA A P L L P

PB C LW

W W I

ε

δ

+ = − −

= −

=

 (9) 

Proof of Theorem 1: Use 

 1ˆ ˆ ˆ( )
2

TV x x P x=  (10) 

as a Lyapunov function candidate. The derivative of (10) along the trajectories of the system (7) is given by 

 1 1ˆ ˆ ˆ ˆ ˆ( )
2 2

T TV x x P x x P x= +� ��  (11) 

Substituting (7) into (11), we obtain 

1 ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )
2

T T TV x x PA A P x x PBu= + +� �  

Using (9) from Lemma 1, yields 

1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( )
2 2
1 1 ˆˆ ˆ ˆ ˆ ˆ ( )
2 2
1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ( )
2 2

T T T T T T

T T T T T T T T

T T T T T T T

V x x L Lx x P x x C LW u

x L Lx x P x x C LW u u u u u

x L Lx x P x C x u u u u x LW u

ε

ε δ δ

ε δ δ

= − − + −

= − − + − + −

= − − + + − −

� �

� � � � �

� � � � �

 

Using (9) from Lemma 1, we obtain 

 1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
2 2

T T TV x x P x Lx W u Lx W u y uε= − − + + +� � � � �  (12) 

Substituting 1 1
1

m
T T T T T

j j m m i i
i

y u y u y u y u y u
=

= + + + + =∑� � � � � � � � � �… …  into (12), we have 
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1

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
2 2

m
T T T

i i
i

V x x P x Lx W u Lx W u y uε
=

= − − + + +∑� � � � �  (13) 

Using the local controllers of Theorem 1, we have 

 

(1 ( ( ) ( ))) ( ) ( ( ) ( )) ( )

( ) ( ( ) ( ))( ( ) ( ))

( ( ) ( )) ( )

i i i i i i

i i i i i

i i i

k t l t u t k t l t y t
or

u t k t l t y t u t

k t l t y t

δ

δ

+ + = − +

= − + +

= − +

�

� �

�

 (14) 

Substituting (14) into (13), we have 

1

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2

m
T T T

i i i i
i

V x x P x Lx W u Lx W u k l y yε
=

= − − + + − +∑� � � � �  

 

Since ( ) 0T
i i i ik l y y+ ≥� � , we have 

1ˆ ˆ ˆ( )
2

TV x x P xε≤−�  

which implies that (̂ )x t  is bounded and converges to zero exponentially fast. Since ˆ T T Tx x x =   �  we 

also have ( )x t , ( )x t�  going to zero exponentially fast. Since y Cx= we have that ( )y t  going to zero 

exponentially fast. The above analysis also implies thatx , x� and y are square integrable i.e. they are L2-

signals. From (8) we have 
0

( ) ( ) ( )
t

T
i i i il t y y dβ τ τ τ= ∫ , since 2iy L∈  it follows that ( )il t  is bounded and 

0

lim ( ) ( ) ( )T
t i i i i il t y y d lβ τ τ τ

∞

→∞ = <∞∫ � . Hence all signals are bounded in addition to ( )iy t  

converging to zero exponentially fast ▪ 
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Remark 1: The following lemma shows that there always exists a scalar δ  such that )(sGm  is SPR.  

Lemma 2: For any n n×  proper transfer function matrix 1ˆˆ ˆ( ) ( )mG s C sI A B−= −�  with all elements 

analytic in the closed right-half complex plane, there exists a scalar δ  such that ( ) ( )m mG s G s Iδ= +�  is 

SPR. 

The following Definition is used for the proof of Lemma 2. 

Definition 1[9]:  Let ( )mG s  be an n n×  transfer function matrix and also let 

( ) ( ) ( )T
h m mG jw G jw G jw= + − . Then ( )mG s  is SPR if 

1. ( )mG s  is analytic in the closed right-half complex plane 

2. ( ) 0 ( , )hG jw w> ∀ ∈ −∞ ∞  

3. ( ) 0hG ∞ ≥  

4. 2lim ( ) 0w hw G jw→∞ > if ( )hG ∞ is singular. 

Proof of Lemma 2: Since we assumed that all elements of ( )mG s  are analytic in the closed right-half 

complex plane, therefore condition 1 of definition 1 is satisfied.  

Now ( )mG s  is SPR if ( )hG jw  is positive definite for any real w or the eigenvalues of ( )hG jw  are 

positive for any real w (includingw =∞ ).  

The characteristic equation of ( )hG jw  at each w is 

( , ) ( )

( ( ) ( ) 2 )

( 2 ) ( ( ) ( ))

0

w w h

T
w m m

T
w m m

w I G jw

I G jw G jw I

I G jw G jw

λ λ

λ δ

λ δ

∆ −

= − + − +

= − − + −

=

�

� �

� �
 

where wλ is the eigenvalue of ( )hG jw at each w. Let minλ  be the minimum eigenvalue of 

( ) ( )T
m mG jw G jw+ −� �  ( , )w∀ ∈ −∞ ∞ , then for  
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min
1
2

δ λ>−  

we have 0wλ > . Therefore condition 2 of definition 1 is satisfied. For condition 3 of definition 1 we 

have ( ) 2 0hG Iδ∞ = ≥ for 0δ ≥ . Therefore condition 3 is satisfied. Choosing 

min
1max{0, }
2

δ λ> − we satisfied conditions 2 and 3 as well as condition 4 ▪ 

Remark 2: The following Lemma can be used to find the constant matrices of the filter and δ  

analytically. 

Lemma 3 [10]: The transfer function matrix 1ˆˆ ˆ( ) ( )mG s C sI A B Iδ−= − +  is SPR if and only if there 

exists a positive definite matrix H such that 

 
ˆ ˆ ˆ ˆ

0
ˆ ˆ 2

T T

T

AH HA B HC

B CH Iδ

 + −  < 
 − −  

 (15) 

The matrix inequality (15) is not linear in terms of H and the filter matrices and therefore it is not easy to 

solve. However, if we select some filter matrices we can convert it to an LMI problem. For example, 

choose A I and C Iα= =� � where α  is some negative value. In this case the matrix inequality (15) can be 

easily solved for the other design matrices and δ  using the LMI toolbox [7].  
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